Electroweak vacuum angle at finite temperature and implications for baryogenesis

We initiate a study of cosmological implications of sphaleron-mediated CP-violation arising from the electroweak vacuum angle under the reasonable assumption that the semiclassical suppression is lifted at finite temperature. In this article, we explore the implications for existing scenarios of baryogenesis. Many compelling models of baryogenesis rely on electroweak sphalerons to relax a $(B+L)$ charge asymmetry. Depending on the sign of the CP-violating parameter, it is shown that the erasure of positive $(B+L)$ will proceed more or less quickly than the relaxation of negative $(B+L)$. This is a higher order effect in the kinetic equation for baryon number, which we derive here through order $n_{B+L}^2$. Its impact on known baryogenesis models therefore seems minor, since phenomenologically $n_{B+L}$ is much smaller than the entropy density. However, there remains an intriguing unexplored possibility that baryogenesis could be achieved with the vacuum angle alone providing the required CP-violation.

[1]  S. Tye,et al.  Bloch Wave Function for the Periodic Sphaleron Potential and Unsuppressed Baryon and Lepton Number Violating Processes , 2015, 1505.03690.

[2]  L. Mclerran,et al.  The electroweak axion, dark energy, inflation and baryonic matter , 2014, 1410.7980.

[3]  N. Bell,et al.  The role of CP violating scatterings in baryogenesis—case study of the neutron portal , 2014, 1410.0108.

[4]  N. Bell,et al.  Particle-antiparticle asymmetries from annihilations. , 2014, Physical review letters.

[5]  Hiren H. Patel,et al.  The electroweak vacuum angle , 2014, 1402.6340.

[6]  M. D’Onofrio,et al.  The sphaleron rate at the electroweak crossover with 125 GeV Higgs mass , 2012, 1212.3206.

[7]  L. Mclerran,et al.  Electroweak instantons, axions, and the cosmological constant , 2012, 1204.2533.

[8]  S. Hsu Theta terms and asymptotic behavior of gauge potentials in (3+1) dimensions , 2011, 1107.0756.

[9]  S. Hsu Physical consequences of the QED theta angle , 2010, 1012.2906.

[10]  P. Stephens,et al.  Fast electroweak symmetry breaking and cold electroweak baryogenesis , 2010, 1005.0752.

[11]  B. Nauta On asymmetric Chern-Simons number diffusion , 2003, hep-ph/0301150.

[12]  A. Ringwald Electroweak instantons/sphalerons at VLHC? , 2002, hep-ph/0212099.

[13]  A. Arrizabalaga,et al.  Asymmetric Chern–Simons number diffusion from CP-violation , 2002, hep-ph/0202115.

[14]  T. Dent,et al.  Standard Model Baryogenesis through Four-fermion Operators in Braneworlds , 2001, hep-ph/0112360.

[15]  B. Nauta Effect of CP-violation on the sphaleron rate , 2000, hep-ph/0002164.

[16]  J. García-Bellido,et al.  Non-equilibrium electroweak baryogenesis from preheating after inflation , 1999, hep-ph/9902449.

[17]  Case Western Reserve University,et al.  Baryogenesis below the electroweak scale , 1999, hep-ph/9902420.

[18]  M. Trodden Electroweak Baryogenesis , 1998, hep-ph/9803479.

[19]  M. Trodden,et al.  CP violation from surface terms in the electroweak theory without fermions , 1998, hep-ph/9802281.

[20]  L. Yaffe,et al.  The Hot baryon violation rate is O (alpha-w**5 T**4) , 1996, hep-ph/9609481.

[21]  A. Anselm,et al.  Can electroweak theta term be observable , 1993 .

[22]  A. L. Kuzemsky,et al.  Nonequilibrium Statistical Thermodynamics , 2017 .

[23]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[24]  W. Marsden I and J , 2012 .