Electronic structure theory and mechanisms of the oxide trapped hole annealing process

First principles quantum mechanical calculations on model SiO/sub 2/ clusters support the Lelis model of reverse annealing in the oxide and provide the first electronic structure explanation of the process, suggesting that delocalized holes (E/sub /spl delta//' centers) are annealed out permanently. Localized holes (E/sub /spl gamma//' centers) form a metastable, dipolar complex, without restoring the Si-Si dimer bond upon electron trapping. In the presence of an applied negative field, these charge neutral, dipolar complexes, (E/sub /spl gamma//'+e/sup -/), can readily release the weakly bonded electron, exhibiting a reverse annealing process.

[1]  A. Stesmans,et al.  Characterization and depth profiling of E’ defects in buried SiO2 , 1993 .

[2]  J. F. Conley,et al.  Electron spin resonance evidence for the structure of a switching oxide trap: Long term structural change at silicon dangling bond sites in SiO2 , 1995 .

[3]  Daniel M. Fleetwood,et al.  The role of border traps in MOS high-temperature postirradiation annealing response , 1993 .

[4]  W. Fowler,et al.  Oxygen vacancy model for the E1′ center in SiO2 , 1974 .

[5]  T. R. Oldham,et al.  Spatial Dependence of Trapped Holes Determined from Tunneling Analysis and Measured Annealing , 1986, IEEE Transactions on Nuclear Science.

[6]  Shashi P. Karna,et al.  Microscopic structure of the E'/sub /spl delta// center in amorphous SiO/sub 2/: A first principles quantum mechanical investigation , 1997 .

[7]  T. Oldham,et al.  Basic Mechanisms of Radiation Effects in Electronic Materials and Devices , 1987 .

[8]  R. K. Freitag,et al.  Evidence for two types of radiation-induced trapped positive charge , 1994 .

[9]  T. Oldham,et al.  Ionizing radiation effects in MOS oxides , 2000 .

[10]  J. A. Modolo,et al.  Radiation Effects in MOS Capacitors with Very Thin Oxides at 80°K , 1984, IEEE Transactions on Nuclear Science.

[11]  J. F. Conley,et al.  Electron spin resonance evidence that E'/sub /spl gamma// centers can behave as switching oxide traps , 1995 .

[12]  S. L. Partridge Silicon-on-insulator technology , 1986 .

[13]  P. S. Winokur,et al.  Physical Mechanisms Contributing to Device "Rebound" , 1984, IEEE Transactions on Nuclear Science.

[14]  Daniel M. Fleetwood,et al.  Effects of interface traps and border traps on MOS postirradiation annealing response , 1995 .

[15]  T. P. Ma,et al.  Ionizing radiation effects in MOS devices and circuits , 1989 .

[16]  Fowler Wb,et al.  Oxygen vacancy in α-quartz : a possible bi- and metastable defect , 1993 .

[17]  John F. Conley,et al.  Electron spin resonance analysis of EP center interactions with H/sub 2/: evidence for a localized EP center structure , 1995 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[20]  H. E. Boesch,et al.  The nature of the trapped hole annealing process , 1989 .

[21]  A. Lelis,et al.  Time dependence of switching oxide traps , 1994 .

[22]  A. Pineda,et al.  Effect of Hole Trapping on the Microscopic Structure of Oxygen Vacancy Sites in a-SiO2 , 2000 .

[23]  Ohki,et al.  Triplet-state defect in high-purity silica glass. , 1990, Physical review. B, Condensed matter.

[24]  Andrew G. Glen,et al.  APPL , 2001 .

[25]  J. R. Srour,et al.  Basic Mechanisms of Radiation Effects on Electronic Materials, Devices, and Integrated Circuits , 1982 .

[26]  E. L. Short,et al.  Quantum Chemistry , 1969, Nature.

[27]  Dennis B. Brown,et al.  Experimental evidence of two species of radiation induced trapped positive charge , 1993 .

[28]  H. E. Boesch,et al.  Reversibility of trapped hole annealing , 1988 .

[29]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[30]  Patrick M. Lenahan,et al.  Hole traps and trivalent silicon centers in metal/oxide/silicon devices , 1984 .