Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Oppor

[1]  Peter M. J. Herman,et al.  Spatial patterns, rates and mechanisms of saltmarsh cycles (Westerschelde, the Netherlands) , 2008 .

[2]  M. W. McCoy,et al.  Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill , 2012, Proceedings of the National Academy of Sciences.

[3]  B. Fisher,et al.  Impacts of species-led conservation on ecosystem services of wetlands: understanding co-benefits and tradeoffs , 2011, Biodiversity and Conservation.

[4]  Manju K. Menon,et al.  Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters , 2010 .

[5]  L. Boorman Salt marshes – present functioning and future change , 1999 .

[6]  P. Herman,et al.  Wave Attenuation by Two Contrasting Ecosystem Engineering Salt Marsh Macrophytes in the Intertidal Pioneer Zone , 2011, Wetlands.

[7]  Jon French,et al.  Tidal marsh sedimentation and resilience to environmental change: Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems , 2006 .

[8]  P. Petraitis,et al.  The importance of scale in testing the origins of alternative community states , 1999 .

[9]  W. Giesen,et al.  Suppressing antagonistic bioengineering feedbacks doubles restoration success. , 2012, Ecological applications : a publication of the Ecological Society of America.

[10]  P. Hoekstra,et al.  Wave forcing over an intertidal mussel bed , 2013 .

[11]  P. H. Avesaath,et al.  Root architecture of six tropical seagrass species, growing in three contrasting habitats in Indonesian waters , 2009 .

[12]  Alison S. Waller,et al.  Genomic variation landscape of the human gut microbiome , 2012, Nature.

[13]  M. Paul,et al.  Spatial and seasonal variation in wave attenuation over Zostera noltii , 2011 .

[14]  Bregje K. van Wesenbeeck,et al.  How ecological engineering can serve in coastal protection , 2011 .

[15]  Frederick T. Short,et al.  Accelerating loss of seagrasses across the globe threatens coastal ecosystems , 2009, Proceedings of the National Academy of Sciences.

[16]  I. Young,et al.  Global Trends in Wind Speed and Wave Height , 2011, Science.

[17]  C. Den Hartog,et al.  Importance of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for Important Coral Reef Fishes, Using a Visual Census Technique , 2000 .

[18]  I. Losada,et al.  Large-scale experiments on wave propagation over Posidonia oceanica , 2011 .

[19]  Tjeerd J. Bouma,et al.  Positive Feedbacks in Seagrass Ecosystems: Implications for Success in Conservation and Restoration , 2007, Ecosystems.

[20]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[21]  P. Herman,et al.  Low-Canopy Seagrass Beds Still Provide Important Coastal Protection Services , 2013, PloS one.

[22]  J. Donnelly,et al.  Coupling instrumental and geological records of sea‐level change: Evidence from southern New England of an increase in the rate of sea‐level rise in the late 19th century , 2004 .

[23]  R. Nicholls,et al.  A global analysis of human settlement in coastal zones , 2003 .

[24]  M. Power,et al.  Structural and Functional Loss in Restored Wetland Ecosystems , 2012, PLoS biology.

[25]  L. Alexander,et al.  Reanalysis suggests long‐term upward trends in European storminess since 1871 , 2011 .

[26]  Johan van de Koppel,et al.  Potential for Sudden Shifts in Transient Systems: Distinguishing Between Local and Landscape-Scale Processes , 2008, Ecosystems.

[27]  Carrie V. Kappel,et al.  Non‐linearity in ecosystem services: temporal and spatial variability in coastal protection , 2009 .

[28]  M. Kirwan,et al.  A coupled geomorphic and ecological model of tidal marsh evolution , 2007, Proceedings of the National Academy of Sciences.

[29]  Daniel R. Brumbaugh,et al.  Fishing, Trophic Cascades, and the Process of Grazing on Coral Reefs , 2006, Science.

[30]  Othman Inayatullah,et al.  The Mechanism of Mangrove Tree in Wave Energy Propagation , 2012 .

[31]  E. Barbier,et al.  The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm , 2011 .

[32]  C. Storlazzi,et al.  Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport , 2011, Coral Reefs.

[33]  P. Herman,et al.  Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. , 2010, Ecology.

[34]  R. Costanza,et al.  Defining and classifying ecosystem services for decision making , 2009 .

[35]  Donald R. Cahoon,et al.  Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls , 2006 .

[36]  S. Pennings,et al.  Post-mortem ecosystem engineering by oysters creates habitat for a rare marsh plant , 2012, Oecologia.

[37]  Blas M. Benito,et al.  Comparing the performance of species distribution models of Zostera marina:Implications for conservation , 2013 .

[38]  Peter M. J. Herman,et al.  Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats , 2011 .

[39]  J. Bruno,et al.  FACILITATION OF COBBLE BEACH PLANT COMMUNITIES THROUGH HABITAT MODIFICATION BY SPARTINA ALTERNIFLORA , 2000 .

[40]  R. Feagin,et al.  Does vegetation prevent wave erosion of salt marsh edges? , 2009, Proceedings of the National Academy of Sciences.

[41]  J. Bruno,et al.  Inclusion of facilitation into ecological theory , 2003 .

[42]  S. Fagherazzi,et al.  Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise , 2013, Proceedings of the National Academy of Sciences.

[43]  S. Temmerman,et al.  Ecosystem-based coastal defence in the face of global change , 2013, Nature.

[44]  R. Naiman,et al.  Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings , 2011 .

[45]  S. Temmerman,et al.  Coastal marsh response to historical and future sea-level acceleration , 2009 .

[46]  P. Herman,et al.  Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes , 2005 .

[47]  C. Duarte,et al.  Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping , 2008 .

[48]  S. Bell,et al.  Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone. , 2012, Ecology.

[49]  Keqi Zhang,et al.  The role of mangroves in attenuating storm surges , 2012 .

[50]  T. Bouma,et al.  Waves and high nutrient loads jointly decrease survival and separately affect morphological and biomechanical properties in the seagrass Zostera noltii , 2012 .

[51]  S. Temmerman,et al.  Vegetation causes channel erosion in a tidal landscape , 2007 .

[52]  C. Crain,et al.  The Protective Role of Coastal Marshes: A Systematic Review and Meta-analysis , 2011, PloS one.

[53]  T. Spencer,et al.  Micro-tidal coastal reed beds: Hydro-morphological insights and observations on wave transformation from the southern Baltic Sea , 2011 .

[54]  Joel E. Cohen,et al.  Human Population: The Next Half Century , 2003, Science.

[55]  M. Fonseca,et al.  A preliminary evaluation of wave attenuation by four species of seagrass , 1992 .

[56]  Benwei Shi,et al.  Wave Attenuation at a Salt Marsh Margin: A Case Study of an Exposed Coast on the Yangtze Estuary , 2011, Estuaries and Coasts.

[57]  M. Rietkerk,et al.  Self-Organized Patchiness and Catastrophic Shifts in Ecosystems , 2004, Science.

[58]  I. Townend,et al.  Wave energy and wave-induced flow reduction by full-scale model Posidonia oceanica seagrass , 2012 .

[59]  Stijn Temmerman,et al.  Effects of shoot stiffness, shoot size and current velocity on scouring sediment from around seedlings and propagules , 2009 .

[60]  S. Temmerman,et al.  Coastal marsh die-off and reduced attenuation of coastal floods: A model analysis , 2012 .

[61]  P. Adam Saltmarshes in a time of change , 2002, Environmental Conservation.

[62]  L. Deegan,et al.  Coastal eutrophication as a driver of salt marsh loss , 2012, Nature.

[63]  D. Alongi Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change , 2008 .

[64]  T. Bouma,et al.  Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current , 2012 .

[65]  Andrea Rinaldo,et al.  The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics , 2009 .

[66]  J. Valentine,et al.  Seagrass herbivory: evidence for the continued grazing of marine grasses , 1999 .

[67]  Johan van de Koppel,et al.  Self‐Organization and Vegetation Collapse in Salt Marsh Ecosystems , 2004, The American Naturalist.

[68]  James W. Fourqurean,et al.  Seagrass ecosystems as a globally significant carbon stock , 2012 .

[69]  Camilo Mora,et al.  A clear human footprint in the coral reefs of the Caribbean , 2008, Proceedings of the Royal Society B: Biological Sciences.

[70]  Iris Möller,et al.  Wave Transformation Over Salt Marshes: A Field and Numerical Modelling Study from North Norfolk, England , 1999 .

[71]  Iris Möller,et al.  Wave dissipation over macro-tidal saltmarshes: Effects of marsh edge typology and vegetation change , 2002, Journal of Coastal Research.

[72]  D. Cahoon,et al.  Marsh vertical accretion in a Southern California Estuary, U.S.A , 1996 .

[73]  Peter M. J. Herman,et al.  Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica , 2009 .

[74]  Glenn R. Guntenspergen,et al.  Influence of tidal range on the stability of coastal marshland , 2010 .

[75]  P. Herman,et al.  Seedling establishment in a dynamic sedimentary environment: a conceptual framework using mangroves , 2013, The Journal of applied ecology.

[76]  T. Bouma,et al.  Root system topology and diameter distribution of species from habitats differing in inundation frequency , 2001 .

[77]  A. Pringle,et al.  Erosion of a cyclic saltmarsh in Morecambe Bay, North‐West England , 1995 .

[78]  Giulio Mariotti,et al.  A numerical model for the coupled long‐term evolution of salt marshes and tidal flats , 2010 .

[79]  C. Duarte,et al.  Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates , 2010 .

[80]  T. Bouma,et al.  The role of seagrasses in coastal protection in a changing climate , 2014 .

[81]  M. Bertness,et al.  Saltmarsh erosion and restoration in south-east England: squeezing the evidence requires realignment: Saltmarsh erosion and restoration , 2005 .

[82]  Iris Möller,et al.  Quantifying saltmarsh vegetation and its effect on wave height dissipation: Results from a UK East coast saltmarsh , 2006 .

[83]  Marten Scheffer,et al.  Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. , 2010, Ecology.

[84]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[85]  D. Cahoon,et al.  A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise , 2013 .

[86]  David P. Callaghan,et al.  Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows , 2010 .

[87]  Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure , 2011 .

[88]  A. Grant,et al.  Does managed coastal realignment create saltmarshes with ‘equivalent biological characteristics’ to natural reference sites? , 2012 .

[89]  Tjeerd J. Bouma,et al.  Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification , 2007 .

[90]  Carrie V. Kappel,et al.  Coastal Ecosystem-Based Management with Nonlinear Ecological Functions and Values , 2008, Science.

[91]  Javier L. Lara,et al.  A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations , 2013 .

[92]  P. Herman,et al.  Conditional outcome of ecosystem engineering: A case study on tussocks of the salt marsh pioneer Spartina anglica , 2012 .

[93]  Y. Gruet Spatio-temporal Changes of Sabellarian Reefs Built by the Sedentary Polychaete Sabellaria alveolata (Linné) , 1986 .

[94]  A. Hastings,et al.  Thresholds and the resilience of Caribbean coral reefs , 2007, Nature.

[95]  T. Q. Bao,et al.  Effect of mangrove forest structures on wave attenuation in coastal Vietnam , 2011 .

[96]  M. Bertness,et al.  Ecosystem Engineering across Environmental Gradients: Implications for Conservation and Management , 2006 .

[97]  T. Bouma,et al.  Resilience of zostera noltii to burial or erosion disturbances , 2012 .

[98]  S. Carpenter,et al.  Catastrophic shifts in ecosystems , 2001, Nature.

[99]  S. Schneider,et al.  Climate Change 2007 Synthesis report , 2008 .

[100]  I. Valiela,et al.  Mangrove Forests: One of the World's Threatened Major Tropical Environments , 2001 .