Majorization and Rényi entropy inequalities via Sperner theory

Abstract A natural link between the notions of majorization and strongly Sperner posets is elucidated. It is then used to obtain a variety of consequences, including new Renyi entropy inequalities for sums of independent, integer-valued random variables.

[1]  W. Beckner Inequalities in Fourier analysis , 1975 .

[2]  Oliver Johnson,et al.  Monotonicity, Thinning, and Discrete Versions of the Entropy Power Inequality , 2009, IEEE Transactions on Information Theory.

[3]  Jeff Kahn,et al.  An Entropy Approach to the Hard-Core Model on Bipartite Graphs , 2001, Combinatorics, Probability and Computing.

[4]  Ben Morris Improved Mixing Time Bounds for the Thorp Shuffle , 2013, Comb. Probab. Comput..

[5]  Pierre Nugues,et al.  Topics in Information Theory and Machine Learning , 2014 .

[6]  Mokshay Madiman,et al.  Combinatorial Entropy Power Inequalities: A Preliminary Study of the Stam Region , 2017, IEEE Transactions on Information Theory.

[7]  Mokshay M. Madiman,et al.  Log-concavity, ultra-log-concavity, and a maximum entropy property of discrete compound Poisson measures , 2009, Discret. Appl. Math..

[8]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .

[9]  K. Ball,et al.  Solution of Shannon's problem on the monotonicity of entropy , 2004 .

[10]  G. H. Hardy,et al.  Notes on the Theory of Series (VIII): An Inequality , 1928 .

[11]  J. Radhakrishnan Entropy and Counting ∗ , 2001 .

[12]  Richard J. Gardner,et al.  A Brunn-Minkowski inequality for the integer lattice , 2001 .

[13]  Emre Telatar,et al.  A New Entropy Power Inequality for Integer-Valued Random Variables , 2014, IEEE Trans. Inf. Theory.

[14]  M. Madiman,et al.  Rogozin's convolution inequality for locally compact groups , 2017, 1705.00642.

[15]  R. Gabriel,et al.  The Rearrangement of Positive Fourier Coefficients , 1932 .

[16]  Daniel J. Kleitman,et al.  Normalized Matching in Direct Products of Partial Orders , 1973 .

[17]  Gregory S. Chirikjian Information-Theoretic Inequalities on Unimodular Lie Groups , 2010, Journal of geometric mechanics.

[18]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[19]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[20]  Peng Xu,et al.  Forward and Reverse Entropy Power Inequalities in Convex Geometry , 2016, ArXiv.

[21]  Sergey G. Bobkov,et al.  On the problem of reversibility of the entropy power inequality , 2011, ArXiv.

[22]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[23]  Mokshay M. Madiman,et al.  Generalized Entropy Power Inequalities and Monotonicity Properties of Information , 2006, IEEE Transactions on Information Theory.

[24]  Robert A. Proctor,et al.  Product partial orders with the sperner property , 1980, Discret. Math..

[25]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[26]  Terence Tao,et al.  Sumset and Inverse Sumset Theory for Shannon Entropy , 2009, Combinatorics, Probability and Computing.

[27]  Mokshay M. Madiman,et al.  Sumset and Inverse Sumset Inequalities for Differential Entropy and Mutual Information , 2012, IEEE Transactions on Information Theory.

[28]  O. Johnson Information Theory And The Central Limit Theorem , 2004 .

[29]  Vsevolod F. Lev,et al.  Linear equations over $\mathbb{F}_p$ and moments of exponential sums , 2001 .

[30]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[31]  Jae Oh Woo,et al.  A lower bound on the Rényi entropy of convolutions in the integers , 2014, 2014 IEEE International Symposium on Information Theory.

[32]  Imre Z. Ruzsa Sumsets and entropy , 2009, Random Struct. Algorithms.

[33]  Sergey G. Bobkov,et al.  Variants of the Entropy Power Inequality , 2017, IEEE Transactions on Information Theory.

[34]  Jiange Li,et al.  Rényi entropy power inequality and a reverse , 2017, ArXiv.

[35]  Hoi H. Nguyen,et al.  A new approach to an old problem of Erdős and Moser , 2011, J. Comb. Theory, Ser. A.

[36]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[37]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[38]  K. Engel Sperner Theory , 1996 .

[39]  Ron Peled,et al.  Rigidity of proper colorings of $${\mathbb {Z}}^{d}$$ , 2018, Inventiones mathematicae.

[40]  Richard P. Stanley,et al.  Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.

[41]  Jae Oh Woo,et al.  Entropy Inequalities for Sums in Prime Cyclic Groups , 2017, SIAM J. Discret. Math..

[42]  Sergey G. Bobkov,et al.  Dimensional behaviour of entropy and information , 2011, ArXiv.

[43]  V. V. Buldygin,et al.  Brunn-Minkowski inequality , 2000 .

[44]  Liyao Wang,et al.  Beyond the Entropy Power Inequality, via Rearrangements , 2013, IEEE Transactions on Information Theory.

[45]  Mokshay Madiman,et al.  Entropy Bounds on Abelian Groups and the Ruzsa Divergence , 2015, IEEE Transactions on Information Theory.

[46]  Michael Hochman,et al.  On self-similar sets with overlaps and inverse theorems for entropy in $\mathbb{R}^d$ , 2012, 1503.09043.

[47]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[48]  Robert A. Proctor,et al.  Solution of Two Difficult Combinatorial Problems with Linear Algebra , 1982 .

[49]  Mokshay M. Madiman,et al.  Information Inequalities for Joint Distributions, With Interpretations and Applications , 2008, IEEE Transactions on Information Theory.

[50]  Patrick P. Bergmans,et al.  A simple converse for broadcast channels with additive white Gaussian noise (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[51]  E. Lieb Proof of an entropy conjecture of Wehrl , 1978 .

[52]  Peng Xu,et al.  An Exact Upper Bound on the Lp Lebesgue Constant and The ∞-Rényi Entropy Power Inequality for Integer Valued Random Variables , 2018, ArXiv.

[53]  Jae Oh Woo,et al.  A discrete entropy power inequality for uniform distributions , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[54]  G. Pólya,et al.  Inequalities (Cambridge Mathematical Library) , 1934 .

[55]  Alfred Geroldinger,et al.  Combinatorial Number Theory and Additive Group Theory , 2009 .

[56]  Mokshay M. Madiman,et al.  Compound Poisson Approximation via Information Functionals , 2010, ArXiv.

[57]  R. Jackson Inequalities , 2007, Algebra for Parents.

[58]  András Sárközy,et al.  Über ein Problem von Erdös und Moser , 1965 .

[59]  Mokshay M. Madiman,et al.  Entropy and set cardinality inequalities for partition‐determined functions , 2008, Random Struct. Algorithms.

[60]  Mokshay M. Madiman,et al.  Entropies of Weighted Sums in Cyclic Groups and an Application to Polar Codes , 2017, Entropy.

[61]  Oliver Johnson,et al.  Entropy and the law of small numbers , 2005, IEEE Transactions on Information Theory.