Iterated Fast Collocation Methods for Integral Equations of the Second Kind

In this paper a new iteration technique is proposed based on fast multiscale collocation methods of Chen et al. (SIAM J Numer Anal 40:344–375, 2002) for Fredholm integral equations of the second kind. It is shown that an additional order of convergence is obtained for each iteration even if the exact solution of the integral equation is non-smooth, the kernel of the integral operator is weakly singular and the matrix compression is implemented. When the solution is smooth, this leads to superconvergence. Numerical examples are presented to illustrate the theoretical results and the efficiency of the method.

[1]  Yuesheng Xu,et al.  Discrete Wavelet Petrov–Galerkin Methods , 2002, Adv. Comput. Math..

[2]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations: I Stability and convergence , 1994 .

[3]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..

[4]  Charles A. Micchelli,et al.  Wavelet Galerkin methods for second-kind integral equations , 1997 .

[5]  Hideaki Kaneko,et al.  Superconvergence of the iterated collocation methods for Hammerstein equations , 1997 .

[6]  Hideaki Kaneko,et al.  Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind , 1994 .

[7]  Ivan G. Graham,et al.  Estimates for the modulus of smoothness , 1985 .

[8]  Bin Wu,et al.  Fast Collocation Methods for High-Dimensional Weakly Singular Integral Equations , 2008 .

[9]  Gennadi Vainikko Some problems leading to multidimensional weakly singular integral equations , 1993 .

[10]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[11]  Zhongying Chen,et al.  The Discrete Petrov-Galerkin Method for Weakly Singular Integral Equations , 1999 .

[12]  C. Micchelli,et al.  Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets , 1994 .

[13]  Guanrong Chen,et al.  Approximate Solutions of Operator Equations , 1997 .

[14]  R. Kress Linear Integral Equations , 1989 .

[15]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[16]  I. Sloan,et al.  Extrapolation of the iterated—collocation method for integral equations of the second kind , 1990 .

[17]  Y. Brudnyi,et al.  A MULTIDIMENSIONAL ANALOG OF A THEOREM OF WHITNEY , 1970 .

[18]  Yanzhao Cao,et al.  Singularity Preserving Galerkin Methods for Weakly Singular Fredholm Integral Equations , 1994 .

[19]  Hideaki Kaneko,et al.  Superconvergence of the iterated degenerate kernel method , 2001 .

[20]  Zhongying Chen,et al.  The Petrov--Galerkin and Iterated Petrov--Galerkin Methods for Second-Kind Integral Equations , 1998 .

[21]  Min Huang,et al.  Superconvergence of the Iterated Hybrid Collocation Method for Weakly Singular Volterra Integral Equations , 2006 .

[22]  Reinhold Schneider,et al.  Multiwavelets for Second-Kind Integral Equations , 1997 .

[23]  Yuesheng Xu,et al.  The Petrov–Galerkin method for second kind integral equations II: multiwavelet schemes , 1997, Adv. Comput. Math..

[24]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[25]  Ian H. Sloan,et al.  Piecewise Continuous Collocation for Integral Equations , 1983 .

[26]  Christoph Schwab,et al.  Wavelet approximations for first kind boundary integral equations on polygons , 1996 .

[27]  Yuesheng Xu,et al.  Fast Collocation Methods for Second Kind Integral Equations , 2002, SIAM J. Numer. Anal..

[28]  Stephen Joe,et al.  Iterated Galerkin versus Iterated Collocation for Integral Equations of the Second Kind , 1985 .