A new fourth-order iterative method for finding multiple roots of nonlinear equations

In this paper, we present a new fourth-order method for finding multiple roots of nonlinear equations. It requires one evaluation of the function and two of its first derivative per iteration. Finally, some numerical examples are given to show the performance of the presented method compared with some known third-order methods.

[1]  W. Gautschi Numerical analysis: an introduction , 1997 .

[2]  Ioannis K. Argyros,et al.  The Jarratt method in Banach space setting , 1994 .

[3]  Ernst Schröder,et al.  Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen , 1870 .

[4]  Changbum Chun,et al.  A third-order modification of Newton's method for multiple roots , 2009, Appl. Math. Comput..

[5]  E. Hansen,et al.  A family of root finding methods , 1976 .

[6]  Changbum Chun,et al.  New families of nonlinear third-order solvers for finding multiple roots , 2009, Comput. Math. Appl..

[7]  Naoki Osada,et al.  An optimal multiple root-finding method of order three , 1994 .

[8]  J. Traub Iterative Methods for the Solution of Equations , 1982 .

[9]  Beny Neta,et al.  New third order nonlinear solvers for multiple roots , 2008, Appl. Math. Comput..

[10]  Chen Dong,et al.  A family of multiopoint iterative functions for finding multiple roots of equations , 1987 .

[11]  Beny Neta,et al.  Extension of Murakami's high-order non-linear solver to multiple roots , 2010, Int. J. Comput. Math..

[12]  Takahiko Murakami,et al.  Some Fifth Order Multipoint Iterative Formulae for Solving Equations , 1978 .

[13]  P. Jarratt,et al.  Multipoint Iterative Methods for Solving Certain Equations , 1966, Comput. J..

[14]  Beny Neta,et al.  High-order nonlinear solver for multiple roots , 2008, Comput. Math. Appl..

[15]  Beny Neta,et al.  A higher order method for multiple zeros of nonlinear functions , 1983 .

[16]  M. V Mederos,et al.  Gautschi, Walter. Numerical analysis: an introduction, Birkhäuser, 1997 , 1999 .