A new fourth-order iterative method for finding multiple roots of nonlinear equations
暂无分享,去创建一个
Liao Xiangke | Li Shengguo | Cheng Li-zhi | C. Li-zhi | Liao Xiangke | Li Shengguo | Shengguo Li | Xiangke Liao | Li-zhi Cheng
[1] W. Gautschi. Numerical analysis: an introduction , 1997 .
[2] Ioannis K. Argyros,et al. The Jarratt method in Banach space setting , 1994 .
[3] Ernst Schröder,et al. Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen , 1870 .
[4] Changbum Chun,et al. A third-order modification of Newton's method for multiple roots , 2009, Appl. Math. Comput..
[5] E. Hansen,et al. A family of root finding methods , 1976 .
[6] Changbum Chun,et al. New families of nonlinear third-order solvers for finding multiple roots , 2009, Comput. Math. Appl..
[7] Naoki Osada,et al. An optimal multiple root-finding method of order three , 1994 .
[8] J. Traub. Iterative Methods for the Solution of Equations , 1982 .
[9] Beny Neta,et al. New third order nonlinear solvers for multiple roots , 2008, Appl. Math. Comput..
[10] Chen Dong,et al. A family of multiopoint iterative functions for finding multiple roots of equations , 1987 .
[11] Beny Neta,et al. Extension of Murakami's high-order non-linear solver to multiple roots , 2010, Int. J. Comput. Math..
[12] Takahiko Murakami,et al. Some Fifth Order Multipoint Iterative Formulae for Solving Equations , 1978 .
[13] P. Jarratt,et al. Multipoint Iterative Methods for Solving Certain Equations , 1966, Comput. J..
[14] Beny Neta,et al. High-order nonlinear solver for multiple roots , 2008, Comput. Math. Appl..
[15] Beny Neta,et al. A higher order method for multiple zeros of nonlinear functions , 1983 .
[16] M. V Mederos,et al. Gautschi, Walter. Numerical analysis: an introduction, Birkhäuser, 1997 , 1999 .