Evaluation of a Conjunctive Surface–Subsurface Process Model (CSSP) over the Contiguous United States at Regional–Local Scales

AbstractThis study presents a comprehensive evaluation on a Conjunctive Surface–Subsurface Process Model (CSSP) in predicting soil temperature–moisture distributions, terrestrial hydrology variations, and land–atmosphere exchanges against various in situ measurements and synthetic observations at regional–local scales over the contiguous United States. The CSSP, rooted in the Common Land Model (CoLM) with a few updates from the Community Land Model version 3.5 (CLM3.5), incorporates significant advances in representing hydrology processes with realistic surface (soil and vegetation) characteristics. These include dynamic surface albedo based on satellite retrievals, subgrid soil moisture variability of topographic controls, surface–subsurface flow interactions, and bedrock constraint on water table depths. As compared with the AmeriFlux tower measurements, the CSSP and CLM3.5 reduce surface sensible and latent heat flux errors from CoLM by 10 W m−2 on average, and have much higher correlations with observ...

[1]  Elfatih A. B. Eltahir,et al.  Representation of Water Table Dynamics in a Land Surface Scheme. Part I: Model Development , 2005 .

[2]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model , 1986 .

[3]  Wolfgang Grabs,et al.  High‐resolution fields of global runoff combining observed river discharge and simulated water balances , 2002 .

[4]  Xubin Zeng,et al.  Improving the Numerical Solution of Soil Moisture-Based Richards Equation for Land Models with a Deep or Shallow Water Table , 2009 .

[5]  Eric F. Wood,et al.  Correction of Global Precipitation Products for Orographic Effects , 2006 .

[6]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[7]  Jinhong Zhu,et al.  Development of the Regional Climate-Weather Research and Forecasting Model (CWRF): Treatment of Topography , 2005 .

[8]  David Rind,et al.  An Efficient Approach to Modeling the Topographic Control of Surface Hydrology for Regional and Global Climate Modeling , 1997 .

[9]  Praveen Kumar,et al.  A model for hydraulic redistribution incorporating coupled soil-root moisture transport , 2007 .

[10]  Rao S. Govindaraju,et al.  Dynamics of Moving Boundary Overland Flows Over Infiltrating Surfaces at Hillslopes , 1991 .

[11]  Praveen Kumar,et al.  Three‐dimensional volume‐averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability , 2007 .

[12]  Zhenghui Xie,et al.  A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model , 2003 .

[13]  Arun Kumar,et al.  Prediction of Monthly-Mean Temperature: The Roles of Atmospheric and Land Initial Conditions and Sea Surface Temperature , 2010 .

[14]  Zong-Liang Yang,et al.  A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models , 2005 .

[15]  M. Katsuyama,et al.  Effects of bedrock permeability on hillslope and riparian groundwater dynamics in a weathered granite catchment , 2005 .

[16]  Keith Beven,et al.  The role of bedrock topography on subsurface storm flow , 2002 .

[17]  David D. Parrish,et al.  NORTH AMERICAN REGIONAL REANALYSIS , 2006 .

[18]  Feng Gao,et al.  Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data , 2005 .

[19]  Haibin Li,et al.  SIMULATED WATER TABLE AND SOIL MOISTURE CLIMATOLOGY OVER NORTH AMERICA , 2008 .

[20]  Peter E. Thornton,et al.  Improvements to the Community Land Model and their impact on the hydrological cycle , 2008 .

[21]  R. Leuning,et al.  A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I:: Model description and comparison with a multi-layered model , 1998 .

[22]  J. Famiglietti,et al.  Multiscale modeling of spatially variable water and energy balance processes , 1994 .

[23]  Alan K. Betts,et al.  Understanding Hydrometeorology Using Global Models , 2004 .

[24]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[25]  John D. Albertson,et al.  Temporal dynamics of soil moisture variability: 2. Implications for land surface models , 2003 .

[26]  Murugesu Sivapalan,et al.  Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway , 2010 .

[27]  I. C. Prentice,et al.  An integrated biosphere model of land surface processes , 1996 .

[28]  Ying Fan,et al.  Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations , 2007 .

[29]  K. Oleson,et al.  Use of FLUXNET in the Community Land Model development , 2008 .

[30]  Eric M LaBolle,et al.  Review of the Integrated Groundwater and Surface‐Water Model (IGSM) , 2003, Ground water.

[31]  Mark S. Seyfried,et al.  Dielectric Loss and Calibration of the Hydra Probe Soil Water Sensor , 2005 .

[32]  Kenneth E. Kunkel,et al.  Development of the Regional Climate-Weather Research and Forecasting (CWRF) Model: Surface Boundary Conditions , 2005 .

[33]  Piers J. Sellers,et al.  Relations between surface conductance and spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales , 1992 .

[34]  Zong-Liang Yang,et al.  Evaluating Enhanced Hydrological Representations in Noah LSM over Transition Zones: Implications for Model Development , 2009 .

[35]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[36]  A. Dai,et al.  Effects of precipitation‐bias corrections on surface hydrology over northern latitudes , 2007 .

[37]  R. Maxwell,et al.  Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model , 2006 .

[38]  Zhenghui Xie,et al.  Effects of water table dynamics on regional climate , 2008 .

[39]  Stephen Sitch,et al.  FLUXNET and modelling the global carbon cycle , 2007 .

[40]  J. Goudriaan,et al.  SEPARATING THE DIFFUSE AND DIRECT COMPONENT OF GLOBAL RADIATION AND ITS IMPLICATIONS FOR MODELING CANOPY PHOTOSYNTHESIS PART I. COMPONENTS OF INCOMING RADIATION , 1986 .

[41]  Zong-Liang Yang,et al.  Preliminary study of spin‐up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1(a) , 1995 .

[42]  Reed M. Maxwell,et al.  Development of a Coupled Land Surface and Groundwater Model , 2005 .

[43]  Xing Yuan,et al.  Spatiotemporal prediction of shallow water table depths in continental China , 2008 .

[44]  Zong-Liang Yang,et al.  Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data , 2007 .

[45]  Peter E. Thornton,et al.  An Improved Canopy Integration Scheme for a Land Surface Model with Prognostic Canopy Structure , 2007 .

[46]  R. Dickinson,et al.  The Common Land Model , 2003 .

[47]  Zhenghui Xie,et al.  Prediction of water table under stream–aquifer interactions over an arid region , 2009 .

[48]  David M. Lawrence,et al.  Incorporating organic soil into a global climate model , 2008 .

[49]  Murugesu Sivapalan,et al.  Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2 , 2010 .

[50]  Hyun Il Choi,et al.  Surface Boundary Conditions for Mesoscale Regional Climate Models , 2005 .

[51]  R. Maxwell,et al.  Interdependence of groundwater dynamics and land-energy feedbacks under climate change , 2008 .

[52]  Piers J. Sellers,et al.  Impact of vegetation properties on U.S. summer weather prediction , 1996 .

[53]  R. Wallach,et al.  The errors in surface runoff prediction by neglecting the relationship between infiltration rate and overland flow depth , 1997 .

[54]  Layer averaged Richard's equation with lateral flow , 2004 .

[55]  Piers J. Sellers,et al.  A Simplified Biosphere Model for Global Climate Studies , 1991 .

[56]  Zhichang Guo,et al.  Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 1. Intermodel comparison , 2006 .

[57]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[58]  Ying Fan,et al.  Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation , 2007 .

[59]  Faisal Hossain,et al.  Have Large Dams Altered Extreme Precipitation Patterns , 2009 .

[60]  Albert Weiss,et al.  Simulating switchgrass growth and development under potential and water-limiting conditions. , 2009 .

[61]  H. Beltrami,et al.  Earth's Long-Term Memory , 2002, Science.

[62]  Jennifer C. Adam,et al.  Adjustment of global gridded precipitation for systematic bias , 2003 .

[63]  Roger A. Pielke,et al.  A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology , 1989 .

[64]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[65]  Qi Hu,et al.  A Daily Soil Temperature Dataset and Soil Temperature Climatology of the Contiguous United States , 2003 .

[66]  P. Milly,et al.  A Model-Based Investigation of Soil Moisture Predictability and Associated Climate Predictability , 2002 .

[67]  Zong-Liang Yang,et al.  Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale , 2006 .

[68]  P. Sellers,et al.  SEISMIC EVIDENCE FOR A LOW-VELOCITY LUNAR CORE , 1992 .

[69]  Keith W. Oleson,et al.  Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations , 2006 .

[70]  Xin‐Zhong Liang,et al.  Improved Terrestrial Hydrologic Representation in Mesoscale Land Surface Models , 2010 .

[71]  R. Pielke,et al.  Seasonal weather prediction as an initial value problem , 1999 .

[72]  David Pollard,et al.  Use of a land-surface-transfer scheme (LSX) in a global climate model: the response to doubling stomatal resistance , 1995 .

[73]  Peter E. Thornton,et al.  Technical Description of the Community Land Model (CLM) , 2004 .

[74]  Reply to comment by Talbot et al. on "Layer averaged Richards' equation with lateral flow" , 2004 .

[75]  Paul A. Dirmeyer The Land Surface Contribution to the Potential Predictability of Boreal Summer Season Climate , 2005 .

[76]  T. Chase,et al.  Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0) , 2007 .

[77]  Xing-Hong Yuan,et al.  Sensitivity of regionalized transfer-function noise models to the input and parameter transfer method / Sensibilité de modèles de type fonction de transfert bruit régionalisée (FTBR) aux données d'entrée et aux méthodes de transfert de paramètres , 2009 .

[78]  R. Dickinson,et al.  The Community Land Model and Its Climate Statistics as a Component of the Community Climate System Model , 2006 .

[79]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[80]  Yongkang Xue,et al.  The Impact of Land Surface Processes on Simulations of the U.S. Hydrological Cycle: A Case Study of the 1993 Flood Using the SSiB Land Surface Model in the NCEP Eta Regional Model , 2001 .

[81]  E. Anagnostou,et al.  Evaluation of canopy interception schemes in land surface models , 2007 .

[82]  Robert B. Jackson,et al.  THE GLOBAL BIOGEOGRAPHY OF ROOTS , 2002 .

[83]  Praveen Kumar,et al.  Topographic Influence on the Seasonal and Interannual Variation of Water and Energy Balance of Basins in North America , 2001 .

[84]  S. Manabe CLIMATE AND THE OCEAN CIRCULATION1 , 1969 .

[85]  Zhongbo Yu,et al.  On continental-scale hydrologic simulations with a coupled hydrologic model , 2006 .

[86]  Douglas L. Kane,et al.  Bias corrections of long‐term (1973–2004) daily precipitation data over the northern regions , 2005 .

[87]  Robert E. Dickinson,et al.  A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance , 2004 .

[88]  R. Dickinson,et al.  Coupling of the Common Land Model to the NCAR Community Climate Model , 2002 .

[89]  Suxia Liu,et al.  Evaluation of Global Soil Wetness Project Soil Moisture Simulations , 1999 .

[90]  R. Dickinson,et al.  A three‐dimensional analytic model for the scattering of a spherical bush , 2008 .

[91]  B. Bonan,et al.  A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User's Guide , 1996 .

[92]  Naota Hanasaki,et al.  GSWP-2 Multimodel Analysis and Implications for Our Perception of the Land Surface , 2006 .

[93]  T. Jackson,et al.  The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN) , 2007 .

[94]  Xin‐Zhong Liang,et al.  Regional climate model simulation of U.S. soil temperature and moisture during 1982-2002 , 2005 .

[95]  J. Famiglietti,et al.  Constraining water table depth simulations in a land surface model using estimated baseflow , 2008 .

[96]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[97]  Scott A. Isard,et al.  A Soil Moisture Climatology of Illinois , 1994 .

[98]  David Robinson,et al.  Gridded North American monthly snow depth and snow water equivalent for GCM evaluation , 2003 .

[99]  K. Kunkel,et al.  Regional Climate Model Simulation of U.S. Precipitation during 1982–2002. Part I: Annual Cycle , 2004 .

[100]  G. Bonan The Land Surface Climatology of the NCAR Land Surface Model Coupled to the NCAR Community Climate Model , 1998 .

[101]  Ben Chie Yen,et al.  Modeling of conjunctive two-dimensional surface-three-dimensional subsurface flows , 2002 .