Retinal and Visual Pathways Involvement in Carriers of Friedreich’s Ataxia

Friedreich’s ataxia (FRDA) is a rare autosomal recessive neurodegenerative disorder due to the homozygous pathological expansion of guanine-adenine-adenine (GAA) triplet repeats in the first intron of the FXN gene, which encodes for the mitochondrial protein frataxin. In the visual system, the typical manifestations are ocular motility abnormality, optic neuropathy, and retinopathy. Despite the evidence of ophthalmological impairment in FRDA patients, there is a lack of information about the morpho-functional condition of the retina and of the optic pathways in healthy heterozygous carriers of Friedreich’s ataxia (C-FRDA). Ten C-FRDA subjects (providing 20 eyes) and thirty-five Controls (providing 70 eyes) underwent a complete neurological and ophthalmological examination comprehensive of functional (full-field Electroretinogram (ffERG), multifocal Electroretinogram (mfERG), Visual Evoked Potential (VEP), and Pattern Reversal Electroretinogram (PERG)) and morphological assessments (Optical Coherence Tomography, OCT) of the retina, macula, retinal ganglion cells, and visual pathways. The groups’ data were compared using a two-sample t-test. Pearson’s test was used to investigate the morpho-functional correlations. Statistically significant differences (p < 0.01) between C-FRDA and Control eyes for the values of the following parameters were found: ffERG b-wave amplitude, mfERG Response Amplitude Densities, PERG P50 implicit time and P50-N95 amplitude, VEP P100 implicit time, Retinal Nerve Fiber Layer (RNFL) Overall, and Nasal thickness. The values of the OCT macular volume were not statistically different (p > 0.01) between the two Groups. Therefore, our data suggest that, in C-FRDA, a dysfunction of retinal elements without morphological macular impairment may occur. In addition, a morphological impairment of RNFL associated with an abnormal neural conduction along the visual pathways can be also detected.

[1]  L. Frishman,et al.  ISCEV Standard for full-field clinical electroretinography (2022 update) , 2022, Documenta Ophthalmologica.

[2]  J. Salazar,et al.  Neuro-Ophthalmological Findings in Friedreich’s Ataxia , 2021, Journal of personalized medicine.

[3]  Michael Bach,et al.  ISCEV standard for clinical multifocal electroretinography (mfERG) (2021 update) , 2021, Documenta Ophthalmologica.

[4]  V. Parisi,et al.  Correlations between visual morphological, electrophysiological, and acuity changes in chronic non-arteritic ischemic optic neuropathy , 2021, Graefe's Archive for Clinical and Experimental Ophthalmology.

[5]  M. Varano,et al.  Macular Functional and Morphological Changes in Intermediate Age-Related Maculopathy , 2020, Investigative ophthalmology & visual science.

[6]  P. Barboni,et al.  Functional Changes of Retinal Ganglion Cells and Visual Pathways in Patients with Chronic Leber's Hereditary Optic Neuropathy during One Year of Follow-up. , 2019, Ophthalmology.

[7]  E. Mermeklieva Pattern electroretinography and retinal changes in patients with diabetes mellitus type 2 , 2019, Neurophysiologie Clinique.

[8]  M. Parravano,et al.  Early and localized retinal dysfunction in patients with type 1 diabetes mellitus studied by multifocal electroretinogram , 2018, Acta Diabetologica.

[9]  M. Carbonelli,et al.  Patterns of Retinal Ganglion Cell Damage in Neurodegenerative Disorders: Parvocellular vs Magnocellular Degeneration in Optical Coherence Tomography Studies , 2017, Front. Neurol..

[10]  K. Bürk Friedreich Ataxia: current status and future prospects , 2017, Cerebellum & Ataxias.

[11]  Pablo Villoslada,et al.  The APOSTEL recommendations for reporting quantitative optical coherence tomography studies , 2016, Neurology.

[12]  L. Corben,et al.  Characterization of the retinal pigment epithelium in Friedreich ataxia , 2015, Biochemistry and biophysics reports.

[13]  K. Örnek,et al.  Optical Coherence Tomography and Visual Field Findings in Patients With Friedreich Ataxia , 2014, Journal of neuro-ophthalmology.

[14]  R. Roxburgh,et al.  Ophthalmic manifestations of inherited neurodegenerative disorders , 2014, Nature Reviews Neurology.

[15]  G. Savini,et al.  Retinal function and neural conduction along the visual pathways in affected and unaffected carriers with Leber's hereditary optic neuropathy. , 2013, Investigative ophthalmology & visual science.

[16]  P. Giunti,et al.  Clinical features of Friedreich's ataxia: classical and atypical phenotypes , 2013, Journal of neurochemistry.

[17]  K. Bushara,et al.  Analysis of the visual system in Friedreich ataxia , 2013, Journal of Neurology.

[18]  J. Arpa,et al.  Ophthalmic features of Friedreich ataxia , 2012, Eye.

[19]  J. Camadro,et al.  Inactivation of mitochondrial aspartate aminotransferase contributes to the respiratory deficit of yeast frataxin-deficient cells. , 2012, The Biochemical journal.

[20]  Michael Bach,et al.  ISCEV standard for clinical visual evoked potentials (2009 update) , 2010, Documenta Ophthalmologica.

[21]  P. Barboni,et al.  Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. , 2009, Biochimica et biophysica acta.

[22]  G. Coppola,et al.  Electrophysiological assessment of visual function in patients with non‐arteritic ischaemic optic neuropathy , 2008, European journal of neurology.

[23]  P. Anslow,et al.  Catastrophic visual loss in a patient with Friedreich ataxia. , 2007, Archives of ophthalmology.

[24]  J. Szlyk,et al.  Retinal Dysfunction in Carriers of Bardet-Biedl Syndrome , 2007, Ophthalmic genetics.

[25]  L. Levin,et al.  Pathophysiology of the optic neuropathy associated with Friedreich ataxia. , 2003, Archives of ophthalmology.

[26]  L. Schöls,et al.  Heterozygous expansion of the GAA tract of the X25/frataxin gene is associated with insulin resistance in humans. , 2000, Diabetes.

[27]  P Trouillas,et al.  Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. , 1997, Human molecular genetics.

[28]  M. Pandolfo,et al.  Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. , 1997, Science.

[29]  P. Patel,et al.  Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion , 1996, Science.

[30]  G. Pozzessere,et al.  Early Detection of Neurological Involvement in IDDM and NIDDM: Multimodal Evoked Potentials Versus Metabolic Control , 1988, Diabetes Care.

[31]  R. Baloh,et al.  Eye movements in Friedreich's ataxia. , 1983, Archives of neurology.

[32]  S. Coupland,et al.  An Electroretinal and Visual Evoked Potential Study in Friedreich’s Ataxia , 1981, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[33]  D. Spinelli,et al.  The ERG in response to alternating gratings in patients with diseases of the peripheral visual pathway. , 1981, Investigative ophthalmology & visual science.

[34]  R. Jampel,et al.  Square wave jerks in Friedreich's ataxia. , 1978, American journal of ophthalmology.

[35]  D. Manners,et al.  Visual system involvement in patients with Friedreich's ataxia. , 2009, Brain : a journal of neurology.

[36]  V. Parisi,et al.  Visual electrophysiological responses in persons with type 1 diabetes , 2001, Diabetes/metabolism research and reviews.

[37]  V. Scaioli,et al.  Visual involvement in Friedreich's ataxia: PERG and VEP study. , 1988, European Neurology.

[38]  G. Celesia Evoked potential techniques in the evaluation of visual function. , 1984, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.