Integration of Geographic Information System frameworks into domain discretisation and meshing processes for geophysical models

Abstract. Computational simulations of physical phenomena rely on an accurate discretisation of the model domain. Numerical models have increased in sophistication to a level where it is possible to support terrain-following boundaries that conform accurately to real physical interfaces, and resolve a multiscale of spatial resolutions. Whilst simulation codes are maturing in this area, pre-processing tools have not developed significantly enough to competently initialise these problems in a rigorous, efficient and recomputable manner. In the relatively disjoint field of Geographic Information Systems (GIS) however, techniques and tools for mapping and analysis of geographical data have matured significantly. If data provenance and recomputability are to be achieved, the manipulation and agglomeration of data in the pre-processing of numerical simulation initialisation data for geophysical models should be integrated into GIS. A new approach to the discretisation of geophysical domains is presented, and introduced with a verified implementation. This brings together the technologies of geospatial analysis, meshing and numerical simulation models. This platform enables us to combine and build up features, quickly drafting and updating mesh descriptions with the rigour that established GIS tools provide. This, combined with the systematic workflow, supports a strong provenance for model initialisation and encourages the convergence of standards.

[1]  Changsheng Chen,et al.  An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries , 2003 .

[2]  Frank O. Bryan,et al.  Coordinated Ocean-ice Reference Experiments (COREs) , 2009 .

[3]  Cheryl Ann Blain,et al.  A tool for rapid configuration of a river model , 2009, OCEANS 2009.

[4]  P. Bailly du Bois Automatic calculation of bathymetry for coastal hydrodynamic models , 2011, Comput. Geosci..

[5]  Christopher C. Pain,et al.  Shoreline approximation for unstructured mesh generation , 2007, Comput. Geosci..

[6]  N. Ritter,et al.  The GeoTiff data interchange standard for raster geographic images , 1997 .

[7]  V. Legat,et al.  A fully implicit wetting-drying method for DG-FEM shallow water models, with an application to the Scheldt Estuary , 2011 .

[8]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[9]  Rüdiger Gerdes,et al.  Formulation of an ocean model for global climate simulations , 2005 .

[10]  Jean-François Remacle,et al.  Multiscale mesh generation on the sphere , 2008 .

[11]  Douglas Comer,et al.  Ubiquitous B-Tree , 1979, CSUR.

[12]  Torsten Schlurmann,et al.  THE INFLUENCE OF EXTREME EVENTS ON HYDRODYNAMICS AND SALINITIES IN THE WESER ESTUARY IN THE CONTEXT OF CLIMATE IMPACT RESEARCH , 2012 .

[13]  Matthew D. Piggott,et al.  Conservative interpolation between unstructured meshes via supermesh construction , 2009 .

[14]  Tony Pan,et al.  Image processing for the grid: a toolkit for building grid-enabled image processing applications , 2003, CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings..

[15]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[16]  Walter H. F. Smith,et al.  A global, self‐consistent, hierarchical, high‐resolution shoreline database , 1996 .

[17]  Andrea Leone,et al.  Assessment of Open Source GIS Software for Water Resources Management in Developing Countries , 2010 .

[18]  Christopher C. Pain,et al.  Tidal Modeling of an Ancient Tide-Dominated Seaway, Part 1: Model Validation and Application to Global Early Cretaceous (Aptian) Tides , 2010 .

[19]  A. Bahaj,et al.  Initial evaluation of tidal stream energy resources at Portland Bill, UK , 2006 .

[20]  Sonya Legg,et al.  Internal Wave Breaking at Concave and Convex Continental Slopes , 2003 .

[21]  Alistair Adcroft,et al.  How slippery are piecewise‐constant coastlines in numerical ocean models? , 1998 .

[22]  Dimitrios Pavlidis,et al.  Modelling of fluid–solid interactions using an adaptive mesh fluid model coupled with a combined finite–discrete element model , 2012, Ocean Dynamics.

[23]  Andrea Mazzolari,et al.  Improved Advancing Front Mesh Algorithm with Pseudoislands as Internal Fronts , 2014 .

[24]  Venkatesh M. Merwade,et al.  GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping , 2008, Environ. Model. Softw..

[25]  Benjamin de Brye,et al.  A depth-averaged two-dimensional sediment transport model for environmental studies in the Scheldt Estuary and tidal river network , 2013 .

[26]  Erwan Bocher,et al.  An overview on current free and open source desktop GIS developments , 2009, Int. J. Geogr. Inf. Sci..

[27]  Keisuke Nakayama,et al.  Effect of stair-step and piecewise linear topography on internal wave propagation in a geophysical flow model , 2009 .

[28]  Ximing Cai,et al.  Linking GIS and water resources management models: an object-oriented method , 2002, Environ. Model. Softw..

[29]  Qiuxiao Chen,et al.  Architecture design of grid GIS and its applications on image processing based on LAN , 2004, Inf. Sci..

[30]  M. Collins,et al.  Water and sediment movement around a coastal headland: Portland Bill, southern UK , 2003 .

[31]  Tuomas Kärnä,et al.  A flux-limiting wetting–drying method for finite-element shallow-water models, with application to the Scheldt Estuary , 2009 .

[32]  Gary Sherman,et al.  Desktop GIS: Mapping the Planet with Open Source Tools , 2008 .

[33]  Ethan J. Kubatko,et al.  ADMESH: An advanced, automatic unstructured mesh generator for shallow water models , 2012, Ocean Dynamics.

[34]  V. Blondel,et al.  Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef , 2014 .

[35]  V. Legat,et al.  A three-dimensional unstructured mesh finite element shallow-water model, with application to the flows around an island and in a wind-driven, elongated basin , 2008 .

[36]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[37]  William J. Schroeder,et al.  A Parallel Approach for Efficiently Visualizing Extremely Large, Time-Varying Datasets , 2000 .

[38]  Qiang Wang,et al.  Enhanced cross‐shelf exchange by tides in the western Ross Sea , 2013 .

[39]  J. C. Dietrich,et al.  Mass Residuals as a Criterion for Mesh Refinement in Continuous Galerkin Shallow Water Models , 2008 .

[40]  Thierry Penduff,et al.  Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution , 2006 .

[41]  B. Sanders,et al.  Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California , 2009 .

[42]  Frédéric Alauzet,et al.  Size gradation control of anisotropic meshes , 2010 .

[43]  Christopher C. Pain,et al.  Accurate representation of geostrophic and hydrostatic balance in unstructured mesh finite element ocean modelling , 2011 .

[44]  Lysandros Tsoulos,et al.  The potential of XML encoding in geomatics converting raster images to XML and SVG , 2006, Comput. Geosci..

[45]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[46]  C. C. Pain,et al.  h, r, and hr adaptivity with applications in numerical ocean modelling , 2005 .

[47]  David A. Ham,et al.  Automated continuous verification for numerical simulation , 2011 .

[48]  Anand Gnanadesikan,et al.  Transient Response in a Z-Level Ocean Model That Resolves Topography with Partial Cells , 1998 .

[49]  J. Feyen,et al.  A Basin to Channel-Scale Unstructured Grid Hurricane Storm Surge Model Applied to Southern Louisiana , 2008 .

[50]  Eric Deleersnijder,et al.  Unstructured, anisotropic mesh generation for the Northwestern European continental shelf, the continental slope and the neighbouring ocean , 2007 .

[51]  Angelika Humbert,et al.  A comparative modeling study of the Brunt Ice Shelf/ Stancomb-Wills Ice Tongue system, East Antarctica , 2009, Journal of Glaciology.

[52]  C. Dana Tomlin,et al.  Geographic Information Systems and Cartographic Modelling , 1990 .

[53]  Nicole Goutal,et al.  TELEMAC: A new numerical model for solving shallow water equations , 1991 .

[54]  Peter Wells,et al.  Enabling Access To Non-Point Source Risk Mapping Tools Using Open Source Software And Open Geospatial Consortium (OGC) Standards : The Development Of The SCIMAP WebApp , 2014 .

[55]  James K. Batcheller,et al.  Towards an open architecture for vector GIS , 2006, Comput. Geosci..

[56]  Francis I. Chung,et al.  Implementation of a feature-constraint mesh generation algorithm within a GIS , 2012, Comput. Geosci..

[57]  Zhishen Wu,et al.  COMSOL Multiphysics: A Novel Approach to Ground Water Modeling , 2009 .

[58]  A. Adcroft,et al.  Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .

[59]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[60]  Colin J. Cotter,et al.  Spud 1.0: generalising and automating the user interfaces of scientific computer models , 2008 .

[61]  T. L. Edwards,et al.  CUBIT mesh generation environment. Volume 1: Users manual , 1994 .

[62]  C. C. Pain,et al.  Solving the Poisson equation on small aspect ratio domains using unstructured meshes , 2009, 0912.1976.

[63]  Christopher C. Pain,et al.  A new computational framework for multi‐scale ocean modelling based on adapting unstructured meshes , 2008 .

[64]  Jens Schröter,et al.  FESOM under coordinated ocean-ice reference experiment forcing , 2011 .

[65]  Yan-tao Xi,et al.  Application of GML and SVG in the development of WebGIS , 2008 .

[66]  C.R.E. de Oliveira,et al.  Optimisation based bathymetry approximation through constrained unstructured mesh adaptivity , 2006 .

[67]  Christopher C. Pain,et al.  A systematic approach to unstructured mesh generation for ocean modelling using GMT and Terreno , 2008, Comput. Geosci..

[68]  Keston W. Smith,et al.  BatTri: A two-dimensional bathymetry-based unstructured triangular grid generator for finite element circulation modeling , 2006, Comput. Geosci..

[69]  Julie D. Pietrzak,et al.  Mesh generation in archipelagos , 2012, Ocean Dynamics.

[70]  Markus Metz,et al.  GRASS GIS: A multi-purpose open source GIS , 2012, Environ. Model. Softw..

[71]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[72]  Marco Stupazzini,et al.  GEOCUBIT, an HPC parallel mesher for Spectral-Element Method seismic wave simulation , 2008 .

[73]  Julie D. Pietrzak,et al.  A finite element sea ice model of the Canadian Arctic Archipelago , 2010 .

[74]  Stefan Steiniger,et al.  The 2012 free and open source GIS software map - A guide to facilitate research, development, and adoption , 2013, Comput. Environ. Urban Syst..

[75]  C.R.E. de Oliveira,et al.  Three-dimensional unstructured mesh ocean modelling , 2005 .

[76]  Jens Schröter,et al.  A finite-element ocean model: principles and evaluation , 2004 .

[77]  Cheryl Ann Blain,et al.  MeshGUI: A Mesh Generation and Editing Toolset for the ADCIRC Model , 2008 .

[78]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .