The paper reports on a proposed four-exponential (four-e) model to describe the behaviour of fibre reinforced concrete (FRC) in flexure. The four-e model was found to be capable to model a variety of curves and has the advantage of being able to model the complete load-deformation response of FRC with one continuous function. The four-e model is also mathematically efficient and differentiation and integration can be readialy applied. In addition, a rational and objective procedure by applying the model has been proposed increasing the potential of the four-e model.A comparison was carried out between theoretical and experimental load-deflection curves obtained for steel fibre reinforced concrete beams under three point bending. It was found that the four-e model can satistifactorily describe the experimental load-deflection curves. The principles applied for the comparison may possibly be applicable to FRC subjected to other types of loading.RésuméLa publication rend compte d'un modèle à quatre fonctions exponentielles («four-e») ayant pour but de décrire le comportement du béton renforcé de fibres (FRC) sous divers types de chargement. Le modèle «four-e» s'est avéré capable de modéliser une variété de courbes et a l'avantage de pouvoir modéliser la réponse complète chargement-déformation de FRC avec une fonction continue. Le modèle «four-e» est également mathématiquement efficace car il se manipule facilement, dans le sens que les procédures mathématiques telles que différentiation et intégration peuvent être aisément appliquées. En outre, le procédé proposé est raisonnable et objectif augmentant ainsi le potentiel du modèle «four-e».Une comparaison a été effectuée entre courbes théoriques et expérimentales de chargement-fléchissement obtenues pour des poutres en béton renforcées par des fibres d'acier soumises à une flexion 3 points. On a constaté que le modèle «four-e» peut décrire de manière satisfaisante les courbes expérimentales de chargement-fléchissement. Les principes appliqués pour la comparaison peuvent également être appliqués au FRC soumis à un chargement en compression ou en tension.
[1]
Chuang Tze-jer,et al.
Flexural behavior of strain-softening solids
,
1989
.
[2]
A. Hillerborg,et al.
Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
,
1976
.
[3]
Z. Bažant,et al.
Crack band theory for fracture of concrete
,
1983
.
[4]
Surendra P. Shah,et al.
Softening Response of Plain Concrete in Direct Tension
,
1985
.
[5]
B. I. G. Barr,et al.
Round-robin analysis of the RILEM TC 162-TDF beam-bending test: Part 1—Test method evaluation
,
2003
.
[6]
M.R.A. van Vliet,et al.
Uniaxial tension test for the determination of fracture parameters of concrete : state of the art
,
2002
.
[7]
Lucie Vandewalle,et al.
RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete' - sigma-epsilon-design method - Final Recommendation
,
2003
.
[8]
Y. Malier,et al.
Effect of steel fibres at two different stages: The material and the structure
,
1987
.
[9]
Lucie Vandewalle,et al.
RILEM TC162-TDF : Test and Design Methods for Steel Fibre Reinforced Concrete : Bending Test, "Technical Recommendation"
,
2002
.
[10]
Francis Tin-Loi,et al.
Determination of quasibrittle fracture law for cohesive crack models
,
1999
.
[11]
Arne Hillerborg,et al.
Analysis of fracture by means of the fictitious crack model, particularly for fibre reinforced concrete
,
1980
.
[12]
P. Rossi,et al.
Mix design and mechanical behaviour of some steel-fibre-reinforced concretes used in reinforced concrete structures
,
1990
.
[13]
M. K. Lee,et al.
Modelling the strain-softening behaviour of plain concrete using a double-exponential model
,
2003
.
[14]
Luc Taerwe,et al.
Analytical formulation of the complete stress-strain curve for high strength concrete
,
1996
.