Estimation and Control Under Information Constraints for LAAS Helicopter Benchmark

A scheme for state estimation and control under information constraints is implemented for “LAAS Helicopter benchmark”. Parameter estimates of the “Helicopter” pitch dynamics model are obtained by means of the real-time identification algorithm. The hybrid continuous-discrete observation procedure for transmission of the measured data over the limited-band communication channel with adaptive tuning of the coder range parameter is proposed and used in the experiments for pitch motion control of the “Helicopter”. Experimental results for pitch motion control of the “Helicopter” are presented, showing efficiency of the proposed method.

[1]  A. Kugi,et al.  Feedforward and Feedback Tracking Control of a 3DOF Helicopter Experiment under Input and Output Constraints , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[2]  Robin J. Evans,et al.  Networked sensor management and data rate control for tracking maneuvering targets , 2005, IEEE Transactions on Signal Processing.

[3]  Carlos Canudas-de-Wit,et al.  Adaptive Delta-modulation Coding for Networked Controlled Systems , 2007, 2007 American Control Conference.

[4]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[5]  Robin J. Evans,et al.  Adaptive Observer-Based Synchronization of Chaotic Systems With First-Order Coder in the Presence of Information Constraints , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Daniel Liberzon,et al.  Hybrid feedback stabilization of systems with quantized signals , 2003, Autom..

[7]  A.S. Matveev,et al.  An analogue of Shannon information theory for networked control systems: State estimation via a noisy discrete channel , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[8]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[9]  R. Brockett,et al.  Systems with finite communication bandwidth constraints. I. State estimation problems , 1997, IEEE Trans. Autom. Control..

[10]  Alexander L. Fradkov,et al.  Synchronization of nonlinear systems under information constraints. , 2007, Chaos.

[11]  Peter J. Gawthrop,et al.  Continuous-time self-tuning control , 1987 .

[12]  João Pedro Hespanha,et al.  Stabilization of nonlinear systems with limited information feedback , 2005, IEEE Transactions on Automatic Control.

[13]  Dimitri Peaucelle,et al.  Adaptive Identification of Angular Motion Model Parameters for LAAS Helicopter Benchmark , 2007, 2007 IEEE International Conference on Control Applications.

[14]  Claudio De Persis,et al.  n-bit stabilization of n-dimensional nonlinear systems in feedforward form , 2004, IEEE Transactions on Automatic Control.

[15]  Alexander L. Fradkov,et al.  Combined adaptive controller for UAV guidance , 2003, 2003 European Control Conference (ECC).

[16]  Alberto Isidori,et al.  Stabilizability by state feedback implies stabilizability by encoded state feedback , 2004, Syst. Control. Lett..

[17]  Rogelio Lozano,et al.  Adaptive control for a radio‐controlled helicopter in a vertical flying stand , 2004 .

[18]  M. Yamakita,et al.  A NEW INVERTED PENDULUM APPARATUS FOR EDUCATION , 1992 .

[19]  C. De Persis,et al.  On stabilization of nonlinear systems under data rate constraints using output measurements , 2006 .

[20]  John Baillieul,et al.  Feedback Designs for Controlling Device Arrays with Communication Channel Bandwidth Constraints , 1999 .

[21]  John Baillieul,et al.  Robust quantization for digital finite communication bandwidth (DFCB) control , 2004, IEEE Transactions on Automatic Control.

[22]  Panos J. Antsaklis,et al.  Control and Communication Challenges in Networked Real-Time Systems , 2007, Proceedings of the IEEE.

[23]  Dimitri Peaucelle,et al.  Adaptive Control Design and Experiments for LAAS "Helicopter" Benchmark , 2008, Eur. J. Control.

[24]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.

[25]  Andrey V. Savkin,et al.  Precision missile guidance using radar/multiple-video sensor fusion via communication channels with bit-rate constraints , 2006, Autom..

[26]  Kazuo Tanaka,et al.  A practical design approach to stabilization of a 3-DOF RC helicopter , 2004, IEEE Transactions on Control Systems Technology.

[27]  Robin J. Evans,et al.  Adaptive observer-based synchronisation of chaotic systems in presence of information constraints , 2006 .

[28]  Darong Chen,et al.  Comparison Between the System Identification and the Neural Network Methods in Identifying a Model Helicopter's Yaw Movement , 2002 .

[29]  Mark W. Spong,et al.  The Pendubot: a mechatronic system for control research and education , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[30]  Chr Schmid An autonomous self-rising pendulum , 1999, 1999 European Control Conference (ECC).

[31]  Alexander L. Fradkov,et al.  Controlled synchronization under information constraints. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Sanjoy K. Mitter,et al.  Endcoding complexity versus minimum distance , 2005, IEEE Transactions on Information Theory.

[33]  Antonio Loría,et al.  A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems , 2005, IEEE Transactions on Automatic Control.

[34]  Dragan Nesic,et al.  Practical encoders for controlling nonlinear systems under communication constraints , 2005, CDC 2005.

[35]  A.V. Savkin,et al.  Output feedback stabilisation of nonlinear networked control systems with non-decreasing nonlinearities , 2006, 2006 American Control Conference.

[36]  Masatoshi Nishi,et al.  Nonlinear adaptive control system design and experiment for a 3-DOF model helicopter , 2008, Artificial Life and Robotics.

[37]  Sylvain Le Gac,et al.  Adaptive parameter identification for simplified 3D-motion model of 'LAAS helicopter benchmark , 2007, ALCOSP.

[38]  Allen Gersho,et al.  Theory of an Adaptive Quantizer , 1973, IEEE Trans. Commun..

[39]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[40]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[41]  Robin J. Evans,et al.  Synchronization of passifiable Lurie systems via limited capacity communication channel , 2008, 2008 47th IEEE Conference on Decision and Control.

[42]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[43]  Boris R. Andrievsky,et al.  Adaptive coding for transmission of position information over the limited-band communication channel , 2007, ALCOSP.

[44]  Anthony J. Calise,et al.  Experimental results on adaptive output feedback control using a laboratory model helicopter , 2002 .

[45]  R.J. Evans,et al.  Minimum Necessary Data Rates for Accurate Track Fusion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[46]  Dimitri Peaucelle,et al.  STATE ESTIMATION OVER THE LIMITED-BAND COMMUNICATION CHANNEL FOR PITCH MOTION CONTROL OF LAAS HELICOPTER BENCHMARK1 , 2007 .