Effective protocol for preparation of N-photon Greenberger–Horne–Zeilinger states with conventional photon detectors

In this work we show that the generating N-photon Greenberger–Horne–Zeilinger entangled state protocol proposed by Xia et al. (Appl Phys Lett 92(1–3):021127, 2008) which can be realized by a simpler optical setup and with a higher success probability. The present protocol setup involves simple linear optical elements, N single-photon superposition states and conventional photon detectors. This makes the protocol more realizable in experiments.

[1]  Jie Song,et al.  Erratum: “Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors” [Appl. Phys. Lett. 92, 021127 (2008)] , 2009 .

[2]  H. Kimble,et al.  Efficient engineering of multiatom entanglement through single-photon detections. , 2003, Physical review letters.

[3]  S. Deleglise,et al.  Quantum jumps of light recording the birth and death of a photon in a cavity , 2006, Nature.

[4]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[5]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[6]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[7]  Jie Song,et al.  Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors , 2008 .

[8]  Jie Song,et al.  Quantum nodes for W-state generation in noisy channels , 2008 .

[9]  Masato Koashi,et al.  An Elementary Optical Gate for Expanding Symmetrically Shared Entanglement , 2008, TQC.

[10]  Shigeki Takeuchi,et al.  Multiphoton detection using visible light photon counter , 1999 .

[11]  Fuguo Deng,et al.  Bidirectional quantum key distribution protocol with practical faint laser pulses , 2004 .

[12]  M. Brune,et al.  Recording the Birth and Death of a Photon in a Cavity , 2007 .

[13]  Franco Nori,et al.  Generation of Macroscopic Entangled States in Coupled Superconducting Phase Qubits(Cross-disciplinary physics and related areas of science and technology) , 2007 .

[14]  Zhi-Ming Zhang,et al.  Entangling distant atoms by interference of polarized photons. , 2003, Physical review letters.

[15]  D. James,et al.  Atomic-vapor-based high efficiency optical detectors with photon number resolution. , 2002, Physical review letters.

[16]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[17]  Guang-Can Guo,et al.  Linear optical scheme for direct implementation of a nondestructive N -qubit controlled phase gate , 2006 .

[18]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[19]  L. Tornberg,et al.  Proposal for generating and detecting multi-qubit GHZ states in circuit QED , 2009, 0902.0324.

[20]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  A. Imamoğlu High efficiency photon counting using stored light. , 2002, Physical Review Letters.

[23]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[24]  Mark W. Coffey,et al.  Greenberger-Horne-Zeilinger state protocols for fully connected qubit networks , 2009, 0907.2225.

[25]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[26]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[27]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[28]  M. Blaauboer,et al.  Production of multipartite entanglement for electron spins in quantum dots , 2007, 0707.1267.

[29]  Yan Xia,et al.  Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding , 2007 .

[30]  G. Giedke,et al.  Entanglement generation via a completely mixed nuclear spin bath , 2007, 0710.4120.

[31]  Xiaolong Su,et al.  Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. , 2006, Physical review letters.

[32]  Christian Kurtsiefer,et al.  Experimental realization of a three-qubit entangled W state. , 2004, Physical review letters.

[33]  X. Zou,et al.  Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay , 2003 .

[34]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[35]  Shi-Biao Zheng,et al.  One-step synthesis of multiatom Greenberger-Horne-Zeilinger states. , 2001, Physical review letters.

[36]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[37]  T. Anhut,et al.  Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter , 1997 .

[38]  Gustavo Rigolin,et al.  Generalized teleportation protocol , 2006 .

[39]  Shou Zhang,et al.  Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors , 2009 .

[40]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[41]  Jie Song,et al.  Preparation of a class of multiatom entangled states , 2009 .

[42]  Jörg Schmiedmayer,et al.  Demonstration of a stable atom-photon entanglement source for quantum repeaters. , 2007, Physical review letters.

[43]  G. Rigolin,et al.  Generalized teleportation protocol (4 pages) , 2006 .

[44]  He-Shan Song,et al.  Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms , 2007, 0709.0802.