A 1.8 $\mu$ W −65 dB THD ECG Acquisition Front-End IC Using a Bandpass Instrumentation Amplifier With Class-AB Output Configuration

This brief presents a power-efficient, highly linear front-end (FE) integrated circuit (IC) for electrocardiogram (ECG) acquisition applications. Compared to typical FE architectures, the proposed FE uses only one bandpass instrumentation amplifier (IA) to reduce the chip area and dc power consumption. To achieve high linearity, the bandpass IA is composed of a high-gain two-stage amplifier in a capacitive-feedback configuration. Miller compensation and the class-AB output stage are utilized to incorporate the filtering and buffering functions within the IA without the need for additional circuit stages. The FE IC is fabricated in 0.13-<inline-formula> <tex-math notation="LaTeX">${ \mu }\text{m}$ </tex-math></inline-formula> CMOS technology, and occupies only a 0.16-mm<sup>2</sup> chip area. The measured input-referred noise is 3.2 <inline-formula> <tex-math notation="LaTeX">${ \mu }$ </tex-math></inline-formula>Vrms with a midband gain of 34.6 dB, and a bandwidth that extends from 0.9 to 350 Hz. A total harmonic distortion of −65 dB is measured at an input signal of 5.5 mV<inline-formula> <tex-math notation="LaTeX">$_{{pp}}$ </tex-math></inline-formula>, with a dc power consumption of 1.8 <inline-formula> <tex-math notation="LaTeX">${\mu }\text{W}$ </tex-math></inline-formula>. In a real-time measurement, the proposed FE IC is capable of detecting high-fidelity ECG waveforms.

[1]  Refet Firat Yazicioglu,et al.  A 30 $\mu$ W Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring , 2011, IEEE Journal of Solid-State Circuits.

[2]  Fan Zhang,et al.  Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[3]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[4]  Marvin Onabajo,et al.  An Analog Front-End Chip With Self-Calibrated Input Impedance for Monitoring of Biosignals via Dry Electrode-Skin Interfaces , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  P.R. Gray,et al.  MOS operational amplifier design-a tutorial overview , 1982, IEEE Journal of Solid-State Circuits.

[6]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[7]  Hansraj Bhamra,et al.  A Noise-Power-Area Optimized Biosensing Front End for Wireless Body Sensor Nodes and Medical Implantable Devices , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Pieter Harpe,et al.  A Noise Reconfigurable Current-Reuse Resistive Feedback Amplifier With Signal-Dependent Power Consumption for Fetal ECG Monitoring , 2016, IEEE Sensors Journal.

[9]  Mansun Chan,et al.  32.9 nV/rt Hz ${-}$60.6 dB THD Dual-Band Micro-Electrode Array Signal Acquisition IC , 2012, IEEE Journal of Solid-State Circuits.

[10]  Yusuf Leblebici,et al.  Energy Efficient Low-Noise Neural Recording Amplifier With Enhanced Noise Efficiency Factor , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[11]  Yong Ping Xu,et al.  A Low-Power, High CMRR Neural Amplifier System Employing CMOS Inverter-Based OTAs With CMFB Through Supply Rails , 2016, IEEE Journal of Solid-State Circuits.

[12]  Anantha Chandrakasan,et al.  A Biomedical Sensor Interface With a sinc Filter and Interference Cancellation , 2011, IEEE Journal of Solid-State Circuits.

[13]  Man-Kay Law,et al.  A 2- $\mu\text{W}$ 45-nV/√Hz Readout Front End With Multiple-Chopping Active-High-Pass Ripple Reduction Loop and Pseudofeedback DC Servo Loop , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Refet Firat Yazicioglu,et al.  A 60 $\mu$W 60 nV/$\surd$Hz Readout Front-End for Portable Biopotential Acquisition Systems , 2007, IEEE Journal of Solid-State Circuits.

[15]  Yannis Tsividis,et al.  Fully differential operational amplifiers with accurate output balancing , 1988 .

[16]  Gaetano Palumbo,et al.  Solutions for CMOS current amplifiers with high-drive output stages , 2000 .

[17]  Brian Otis,et al.  A Low-Power ECoG/EEG Processing IC With Integrated Multiband Energy Extractor , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Jan M. Rabaey,et al.  A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply , 2012, IEEE Journal of Solid-State Circuits.