A quantitative model for doping contrast in the scanning electron microscope using calculated potential distributions and Monte Carlo simulations

This paper describes the use of a Monte Carlo model incorporating a finite-element method computing the electrostatic fields inside and outside a semiconductor, plus a ray-tracing algorithm for determining the doping contrast observed in a scanning electron microscope (SEM). This combined numerical method also enables the effects on the doping contrast of surface band-bending to be distinguished from those of external patch fields outside the specimen, as well as any applied macroscopic external fields from the detection system in the SEM. Good agreement of our new theory with experiment is obtained. The contrast characteristics in energy-filtered secondary electron images are also explained. The results of this work lead to a more advanced understanding of the doping contrast mechanisms, thereby enabling quantitative dopant profiling using the SEM.

[1]  M. Chung The effects of bulk doping on the ESR signal of clean Si surfaces , 1971 .

[2]  R. F. Broom,et al.  Dopant profiling with the scanning electron microscope—A study of Si , 2002 .

[3]  A. Howie Recent developments in secondary electron imaging , 1995 .

[4]  J. Rodenburg,et al.  A comprehensive Monte Carlo calculation of dopant contrast in secondary-electron imaging , 2008 .

[5]  J. Schmidt,et al.  Energetics and kinetics of surface states at n-type silicon surfaces in aqueous fluoride solutions , 1996 .

[6]  C. Humphreys,et al.  High resolution dopant profiling in the SEM, image widths and surface band-bending , 2008 .

[7]  Sealy,et al.  Mechanism for secondary electron dopant contrast in the SEM , 2000, Journal of electron microscopy.

[8]  R. K. Matta,et al.  Evaluation of Passivated Integrated Circuits Using the Scanning Electron Microscope , 1964 .

[9]  Z. Barkay,et al.  Secondary electron doping contrast: Theory based on scanning electron microscope and Kelvin probe force microscopy measurements , 2010 .

[10]  I. A. Glavatskikh,et al.  Monte Carlo Modeling of Electron Scattering in Nonconductive Specimens , 2004, Microscopy and Microanalysis.

[11]  A. Howie,et al.  Threshold Energy Effects in Secondary Electron Emission , 1999, Microscopy and Microanalysis.

[12]  J.-Ch. Kuhr,et al.  Attenuation and escape depths of low-energy electron emission , 2001 .

[13]  M. El-Gomati,et al.  Very-low-energy electron microscopy of doped semiconductors , 2001 .

[14]  D. Biegelsen,et al.  Electronic traps and Pb centers at the Si/SiO2 interface: Band‐gap energy distribution , 1984 .

[15]  Erik René Kieft,et al.  Refinement of Monte Carlo simulations of electron–specimen interaction in low-voltage SEM , 2008 .

[16]  Brower,et al.  Dipolar interactions between dangling bonds at the (111) Si-SiO2 interface. , 1986, Physical review. B, Condensed matter.

[17]  S. Tear,et al.  Why is it possible to detect doped regions of semiconductors in low voltage SEM: a review and update , 2005 .

[18]  R. F. Broom,et al.  Optimizing and quantifying dopant mapping using a scanning electron microscope with a through-the-lens detector , 2003 .

[19]  Z. Ding,et al.  Monte Carlo modelling of electron-solid interactions , 1992 .

[20]  H. Yamagishi Fermi Level Stabilization and Surface States at the Interfaces of Si(111) Surfaces and Insulating Layers , 1968 .

[21]  M. El-Gomati,et al.  Why is it that differently doped regions in semiconductors are visible in low voltage SEM? , 2004, IEEE Transactions on Electron Devices.

[22]  H. Fitting,et al.  Monte Carlo simulation of secondary electron emission from the insulator SiO2 , 2002 .

[23]  David C. Joy,et al.  Calculations of Mott scattering cross section , 1990 .

[24]  Z. Ding,et al.  Monte Carlo study of backscattering and secondary electron generation , 1988 .

[25]  E. Cartier,et al.  Hot‐electron induced passivation of silicon dangling bonds at the Si(111)/SiO2 interface , 1996 .

[26]  C. Humphreys,et al.  Progress towards quantitative dopant profiling in the SEM , 2010 .

[27]  T. Fischer Surface properties of Si from photoelectric emission at room temperature and 80 °K , 1968 .

[28]  H. Seiler Einige aktuelle Probleme der Sekundarelektron-emission , 1967 .

[29]  C. Lavoie,et al.  Field-emission SEM imaging of compositional and doping layer semiconductor superlattices , 1995 .