A quantitative model for doping contrast in the scanning electron microscope using calculated potential distributions and Monte Carlo simulations
暂无分享,去创建一个
R. F. Broom | Colin J. Humphreys | C. Humphreys | R. Broom | Augustus K. W. Chee | Eric G.T. Bosch | E. Bosch
[1] M. Chung. The effects of bulk doping on the ESR signal of clean Si surfaces , 1971 .
[2] R. F. Broom,et al. Dopant profiling with the scanning electron microscope—A study of Si , 2002 .
[3] A. Howie. Recent developments in secondary electron imaging , 1995 .
[4] J. Rodenburg,et al. A comprehensive Monte Carlo calculation of dopant contrast in secondary-electron imaging , 2008 .
[5] J. Schmidt,et al. Energetics and kinetics of surface states at n-type silicon surfaces in aqueous fluoride solutions , 1996 .
[6] C. Humphreys,et al. High resolution dopant profiling in the SEM, image widths and surface band-bending , 2008 .
[7] Sealy,et al. Mechanism for secondary electron dopant contrast in the SEM , 2000, Journal of electron microscopy.
[8] R. K. Matta,et al. Evaluation of Passivated Integrated Circuits Using the Scanning Electron Microscope , 1964 .
[9] Z. Barkay,et al. Secondary electron doping contrast: Theory based on scanning electron microscope and Kelvin probe force microscopy measurements , 2010 .
[10] I. A. Glavatskikh,et al. Monte Carlo Modeling of Electron Scattering in Nonconductive Specimens , 2004, Microscopy and Microanalysis.
[11] A. Howie,et al. Threshold Energy Effects in Secondary Electron Emission , 1999, Microscopy and Microanalysis.
[12] J.-Ch. Kuhr,et al. Attenuation and escape depths of low-energy electron emission , 2001 .
[13] M. El-Gomati,et al. Very-low-energy electron microscopy of doped semiconductors , 2001 .
[14] D. Biegelsen,et al. Electronic traps and Pb centers at the Si/SiO2 interface: Band‐gap energy distribution , 1984 .
[15] Erik René Kieft,et al. Refinement of Monte Carlo simulations of electron–specimen interaction in low-voltage SEM , 2008 .
[16] Brower,et al. Dipolar interactions between dangling bonds at the (111) Si-SiO2 interface. , 1986, Physical review. B, Condensed matter.
[17] S. Tear,et al. Why is it possible to detect doped regions of semiconductors in low voltage SEM: a review and update , 2005 .
[18] R. F. Broom,et al. Optimizing and quantifying dopant mapping using a scanning electron microscope with a through-the-lens detector , 2003 .
[19] Z. Ding,et al. Monte Carlo modelling of electron-solid interactions , 1992 .
[20] H. Yamagishi. Fermi Level Stabilization and Surface States at the Interfaces of Si(111) Surfaces and Insulating Layers , 1968 .
[21] M. El-Gomati,et al. Why is it that differently doped regions in semiconductors are visible in low voltage SEM? , 2004, IEEE Transactions on Electron Devices.
[22] H. Fitting,et al. Monte Carlo simulation of secondary electron emission from the insulator SiO2 , 2002 .
[23] David C. Joy,et al. Calculations of Mott scattering cross section , 1990 .
[24] Z. Ding,et al. Monte Carlo study of backscattering and secondary electron generation , 1988 .
[25] E. Cartier,et al. Hot‐electron induced passivation of silicon dangling bonds at the Si(111)/SiO2 interface , 1996 .
[26] C. Humphreys,et al. Progress towards quantitative dopant profiling in the SEM , 2010 .
[27] T. Fischer. Surface properties of Si from photoelectric emission at room temperature and 80 °K , 1968 .
[28] H. Seiler. Einige aktuelle Probleme der Sekundarelektron-emission , 1967 .
[29] C. Lavoie,et al. Field-emission SEM imaging of compositional and doping layer semiconductor superlattices , 1995 .