Pseudospectra and stability radii for analytic matrix functions with application to time-delay systems

Denitions for pseudospectra and stability radii of an analytic matrix function are given, where the structure of the function is exploited. Various perturbation meas- ures are considered and computationally tractable formulae are derived. The results are applied to a class of retarded delay dieren tial equations. Special properties of the pseudospectra of such equations are determined and illustrated.

[1]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[2]  Stephen P. Boyd,et al.  A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..

[3]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[4]  J. Craggs Applied Mathematical Sciences , 1973 .

[5]  Wim Michiels,et al.  An eigenvalue based approach for the robust stabilization of linear time-delay systems , 2003 .

[6]  E. Gallestey,et al.  Spectral value sets of closed linear operators , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Vincent Vermaut,et al.  On stability radii of generalized eigenvalue problems , 1997, 1997 European Control Conference (ECC).

[8]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[9]  Adrian S. Lewis,et al.  Optimization and Pseudospectra, with Applications to Robust Stability , 2003, SIAM J. Matrix Anal. Appl..

[10]  G. Samaey,et al.  DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .

[11]  R. Curtain,et al.  Functional Analysis in Modern Applied Mathematics , 1977 .

[12]  D. Hinrichsen,et al.  Robust stability of linear systems described by higher-order dynamic equations , 1993, IEEE Trans. Autom. Control..

[13]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  P. Van Dooren,et al.  Real and complex stability radii of polynomial matrices , 2002 .

[15]  Paul Van Dooren,et al.  Convergence of the calculation of Hoo norms and related questions , 1998 .

[16]  Nicholas J. Higham,et al.  Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..

[17]  Denis Dochain,et al.  Sensitivity to Infinitesimal Delays in Neutral Equations , 2001, SIAM J. Control. Optim..

[18]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[19]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[20]  Kirk Green,et al.  Pseudospectra and delay differential equations , 2006 .