Couplage des méthodes modale et éléments finis pour la diffraction des ondes élastiques guidées : Application au Contrôle Non Destructif

En vue de simuler une experience de controle non destructif par ondes ultrasonores guidees, on considere un guide elastique 2D (une plaque) ou 3D (une barre) qui comporte un defaut (fissure, heterogeneite locale due a une soudure etc...). L'objectif est de resoudre numeriquement le probleme de la diffraction d'un mode du guide par le defaut. Nous nous sommes attaches a mettre au point une methode couplant des elements finis dans une portion (aussi petite que possible) du guide, contenant le defaut, avec des decompositions modales de part et d'autre du defaut. La difficulte consiste a ecrire la bonne condition de raccord entre ces deux representations. Le point important est d'avoir a sa disposition une relation d'orthogonalite permettant de projeter la solution elements finis sur les modes. Ceci conduit a formuler le probleme a l'aide de vecteurs hybrides deplacement/contrainte pour lesquels il existe une relation de bi-orthogonalite : la relation dite de Fraser. On peut alors ecrire une condition exacte (ou transparente) a la troncature modale pres, sur les frontieres artificielles du domaine de calcul. Il faut enfin integrer cette condition aux limites dans une approche variationnelle (en deplacements) en vue de developper une methode d'elements finis. Du fait du caractere hybride de la condition, on doit pour cela introduire comme inconnue supplementaire la composante normale de la contrainte normale definie sur la frontiere artificielle et ecrire une formulation mixte. Nous avons traite numeriquement les cas bidimensionnel et tridimensionnel d'un guide isotrope a bords libres. Les modes du guide sont calcules numeriquement par une approche originale utilisant a nouveau les vecteurs hybrides deplacement/contrainte, qui permet de conserver au niveau discret la relation de biorthogonalite. Le code developpe permet de calculer tres rapidement la "matrice de scattering

[1]  Joseph L. Rose,et al.  Guided wave simulation and visualization by a semianalytical finite element method , 2003 .

[2]  Mohamed Ichchou,et al.  Multi-mode propagation and diffusion in structures through finite elements , 2005 .

[3]  Ivan Bartoli,et al.  Modeling guided wave propagation with application to the long-range defect detection in railroad tracks , 2005 .

[4]  B. Auld General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients , 1979 .

[5]  Vincent Pagneux,et al.  Lamb wave propagation in elastic waveguides with variable thickness , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Pius Kirrmann,et al.  On the completeness of Lamb modes , 1994 .

[7]  M.J.S. Lowe,et al.  Matrix techniques for modeling ultrasonic waves in multilayered media , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[9]  B. Auld Acoustic fields and waves in solids. Vol. 1 , 1990 .

[10]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[11]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[12]  R. D. Gregory,et al.  Scattering of Rayleigh-Lamb waves by a surface breaking crack in an elastic plate. , 2006, The Journal of the Acoustical Society of America.

[13]  Ivan Bartoli,et al.  Modeling wave propagation in damped waveguides of arbitrary cross-section , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[14]  Gui-Rong Liu,et al.  A non-reflecting boundary for analyzing wave propagation using the finite element method , 2003 .

[15]  Stanley B. Dong,et al.  High frequency vibrations and waves in laminated orthotropic plates , 1973 .

[16]  S. Rokhlin,et al.  Diffraction of Lamb waves by a finite crack in an elastic layer , 1980 .

[17]  D. Givoli Non-reflecting boundary conditions , 1991 .

[18]  S. I. Rokhlin,et al.  Resonance phenomena of Lamb waves scattering by a finite crack in a solid layer , 1981 .

[19]  Patrick Joly,et al.  Mathematical Analysis of Guided Water Waves , 1993, SIAM J. Appl. Math..

[20]  I. David Abrahams,et al.  An Orthogonality Relation for a Class of Problems with High-Order Boundary Conditions , 1999 .

[21]  Karim Jezzine Approche modale pour la simulation globale de contrôles non-destructifs par ondes élastiques guidées , 2006 .

[22]  Fr'ed'eric Nataf,et al.  A new approach to perfectly matched layers for the linearized Euler system , 2005, J. Comput. Phys..

[23]  E. A. Skelton,et al.  Guided elastic waves and perfectly matched layers , 2007 .

[24]  Stanley B. Dong,et al.  On Natural Vibrations and Waves in Laminated Orthotropic Plates , 1972 .

[25]  H. Lamb On waves in an elastic plate , 1917 .

[26]  Joseph L. Rose,et al.  A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential , 2002 .

[27]  M. Lowe,et al.  DISPERSE: A GENERAL PURPOSE PROGRAM FOR CREATING DISPERSION CURVES , 1997 .

[28]  Anne-Sophie Bonnet-Ben Dhia,et al.  Perfectly Matched Layers for the Convected Helmholtz Equation , 2004, SIAM J. Numer. Anal..

[29]  Ramón Abascal,et al.  Numerical simulation of Lamb wave scattering in semi‐infinite plates , 2001 .

[30]  J. Rose,et al.  Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. , 2003, Ultrasonics.

[31]  Takahiro Hayashi,et al.  Analysis of flexural mode focusing by a semianalytical finite element method. , 2003, The Journal of the Acoustical Society of America.

[32]  L. Gavric Computation of propagative waves in free rail using a finite element technique , 1995 .

[33]  Joseph L. Rose,et al.  Guided wave inspection potential of defects in rail , 2004 .

[34]  John B. Schneider,et al.  Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .

[35]  Horace Lamb,et al.  On the Flexure of an Elastic Plate , 1889 .

[36]  J. Rose Ultrasonic Waves in Solid Media , 1999 .

[37]  F. B. Belgacem,et al.  ON THE SCHWARZ ALGORITHMS FOR THE ELLIPTIC EXTERIOR BOUNDARY VALUE PROBLEMS , 2005 .

[38]  A. Maurel,et al.  Determination of Lamb mode eigenvalues. , 2001, The Journal of the Acoustical Society of America.

[39]  A. Lhémery,et al.  SIMULATION OF INSPECTIONS OF ELASTIC WAVEGUIDES OF ARBITRARY SECTION CONTAINING ARBITRARY LOCAL DISCONTINUITIES OR DEFECTS , 2010 .

[40]  M L Peterson,et al.  A semi-analytical model for predicting multiple propagating axially symmetric modes in cylindrical waveguides. , 2005, Ultrasonics.

[41]  A. Bonnet Analyse mathematique de la propagation de modes guides dans les fibres optiques , 1988 .

[42]  D. Zakharov,et al.  Orthogonality of 3D guided waves in viscoelastic laminates and far field evaluation to a local acoustic source , 2008 .

[43]  I. A. Viktorov Rayleigh and Lamb Waves: Physical Theory and Applications , 1967 .

[44]  W. Thomson,et al.  Transmission of Elastic Waves through a Stratified Solid Medium , 1950 .

[45]  A. Lhémery,et al.  TWO EFFICIENT METHODS OF MODE SELECTION IN A WAVE GUIDE INSONIFIED BY A TRANSDUCER MOUNTED ON ITS SECTION , 2008 .

[46]  M. Peterson,et al.  Individual longitudinal Pochhammer-Chree modes in observed experimental signals , 2005 .

[47]  M. Ichchou,et al.  Analysis of wave propagation in cylindrical pipes with local inhomogeneities , 2009 .

[48]  P. Cawley,et al.  The low frequency reflection characteristics of the fundamental antisymmetric Lamb wave a0 from a rectangular notch in a plate. , 2002, The Journal of the Acoustical Society of America.

[49]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[50]  Vincent Pagneux,et al.  Lamb wave propagation in inhomogeneous elastic waveguides , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[51]  Subhendu K. Datta,et al.  Transient ultrasonic guided waves in layered plates with rectangular cross section , 2003 .

[52]  Transient Ultrasonic Guided Waves in Bi‐Layered Anisotropic Plates with Rectangular Cross Section , 2004 .

[53]  N. Anders Petersson,et al.  Perfectly matched layers for Maxwell's equations in second order formulation , 2005 .

[54]  W. B. Fraser Orthogonality relation for the Rayleigh-Lamb modes of vibration of a plate , 1976 .

[55]  J. Achenbach Wave propagation in elastic solids , 1962 .

[56]  Marc Lenoir,et al.  The Localized Finite Element Method and Its Application to the Two-Dimensional Sea-Keeping Problem , 1988 .

[57]  Anne-Sophie Bonnet-Ben Dhia,et al.  Transparent boundary conditions for the harmonic diffraction problem in an elastic waveguide , 2010, J. Comput. Appl. Math..

[58]  Lanbo Liu,et al.  Acoustic pulse propagation near a right-angle wall. , 2006, The Journal of the Acoustical Society of America.

[59]  P. Wilcox,et al.  Modeling the excitation of guided waves in generally anisotropic multilayered media , 2007 .

[60]  M. Lowe,et al.  Low-frequency reflection characteristics of the s0 lamb wave from a rectangular notch in a plate. , 2002, The Journal of the Acoustical Society of America.

[61]  Fabien Treyssède,et al.  Numerical investigation of elastic modes of propagation in helical waveguides. , 2007, The Journal of the Acoustical Society of America.

[62]  R. D. Gregory A note on bi-orthogonality relations for elastic cylinders of general cross section , 1983 .

[63]  Gunilla Kreiss,et al.  A new absorbing layer for elastic waves , 2006, J. Comput. Phys..

[64]  P. Malischewsky,et al.  Mode series expansions at vertical boundaries in elastic waveguides , 2004 .

[65]  Vincent Pagneux,et al.  Scattering matrix properties with evanescent modes for waveguides in fluids and solids , 2004 .

[66]  M. Castaings,et al.  Surface impedance matrices to model the propagation in multilayered media. , 2003, Ultrasonics.

[67]  A. Lhémery,et al.  Simulation of Guided Wave Inspection Based on the Reciprocity Principle and the Semi‐Analytical Finite Element Method , 2007 .

[68]  A. Lhémery,et al.  Simulation of non-destructive inspections and acoustic emission measurements involving guided waves , 2009 .

[69]  N. A. Haskell The Dispersion of Surface Waves on Multilayered Media , 1953 .

[70]  Peter Cawley,et al.  Practical Long Range Guided Wave Inspection — Managing Complexity , 2003 .

[71]  A. Lhémery,et al.  A numerical method for the simulation of NDT experiments in an elastic waveguide , 2009 .

[72]  S. Rokhlin,et al.  Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method. , 2002, The Journal of the Acoustical Society of America.

[73]  Mohamed Ichchou,et al.  Wave finite elements for low and mid-frequency description of coupled structures with damage , 2009 .

[74]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[75]  Samuel P. Marin,et al.  Variational methods for underwater acoustic problems , 1978 .