Comparative Functional Genomics of the Fission Yeasts

A combined analysis of genome sequence, structure, and expression gives insights into fission yeast biology. The fission yeast clade—comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus—occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.

Manolis Kellis | Nir Friedman | Hanah Margalit | Aviv Regev | Qiandong Zeng | Karl Ekwall | Sushmita Roy | Hironori Niki | Michael F Lin | Ilan Wapinski | Ryan J. Yoder | Michael F. Lin | Moran Yassour | Chad Nusbaum | Matthew Vaughn | Carolin A. Müller | Conrad A. Nieduszynski | Courtney French | Henry Levin | Carsten Russ | Joshua Z Levin | Naomi Habib | Courtney E. French | David I Heiman | Conrad A Nieduszynski | Barbara Robbertse | Sharvari Gujja | N. Friedman | B. Haas | M. Yassour | J. Levin | D. Thompson | Lin Fan | Q. Zeng | Zehua Chen | N. Rhind | B. Birren | C. Nusbaum | A. Regev | Manolis Kellis | C. Russ | P. Baumann | Naomi Habib | H. Margalit | J. Leatherwood | David I. Heiman | R. Martienssen | Huei-Mei Chen | J. Pfiffner | Dawn-Anne Thompson | D. Baulcombe | S. Sykes | A. Berlin | I. Wapinski | M. Priest | Michael G. Fitzgerald | S. Young | J. Goldberg | S. Gujja | Sushmita Roy | J. Spatafora | M. Vaughn | K. Furuya | H. Niki | B. Robbertse | P. Swoboda | J. Dalgaard | H. Levin | C. Desjardins | Keita Aoki | K. Ekwall | E. Bayne | Yabin Guo | A. Pidoux | E. Dobbs | Livio Dukaj | Klavs R. Hansen | D. Keifenheim | R. Mosher | A. Smialowska | S. Vengrova | Robin Allshire | W. Brown | Peter Swoboda | Bruce W Birren | Zehua Chen | Brian J Haas | Jenna Pfiffner | Sarah K. Young | Margaret Priest | David Baulcombe | Kanji Furuya | Joseph W Spatafora | Christopher A Desjardins | Janet Leatherwood | Aaron M Berlin | Rob Martienssen | Nicholas Rhind | Rebecca A Mosher | Lin Fan | Jacob Z Dalgaard | Dawn A Thompson | Peter Baumann | Sarah K Young | Yabin Guo | Alison Pidoux | Huei Mei Chen | Jonathan M Goldberg | Keita Aoki | Elizabeth H Bayne | Edward Dobbs | Livio Dukaj | Michael G FitzGerald | Klavs Hansen | Dan Keifenheim | Carolin A Müller | Agata Smialowska | Sean M Sykes | Sonya Vengrova | Ryan Yoder | Robin Allshire | William Brown | M. Kellis | Agata Smialowska | C. French | Nir Friedman | Edward Dobbs | N. Habib | Qiandong Zeng | Sharvari Gujja | Jenna Pfiffner | Sarah K. Young | Daniel Keifenheim | Zehua Chen | J. Goldberg | Sushmita Roy | Michael F. Lin | Nicholas Rhind | B. J. Haas | Naomi Habib | Sarah K Young | Kanji Furuya | Yabin Guo | Huei Mei Chen | Barbara Robbertse | Christopher A Desjardins | Michael G. FitzGerald | Courtney French | Klavs Hansen | Rebecca A. Mosher | Matthew Vaughn | David Baulcombe | William Brown | Henry Levin | Robert A. Martienssen | Jacob Z. Dalgaard | Peter Baumann | A. Regev | Aviv Regev | Ilan Wapinski | Christopher A. Desjardins

[1]  S. Forsburg,et al.  The best yeast? , 1999, Trends in genetics : TIG.

[2]  Tsvetomira Ivanova,et al.  Promoter-driven splicing regulation in fission yeast , 2008, Nature.

[3]  K. Choo,et al.  Evolutionary dynamics of transposable elements at the centromere. , 2004, Trends in genetics : TIG.

[4]  R. Lyne,et al.  The transcriptional program of meiosis and sporulation in fission yeast , 2002, Nature Genetics.

[5]  S. Bell,et al.  Conserved nucleosome positioning defines replication origins. , 2010, Genes & development.

[6]  J. Leatherwood,et al.  Negative control contributes to an extensive program of meiotic splicing in fission yeast. , 2005, Molecular cell.

[7]  G. Singh,et al.  The 2.1-kb inverted repeat DNA sequences flank the mat2,3 silent region in two species of Schizosaccharomyces and are involved in epigenetic silencing in Schizosaccharomyces pombe. , 2002, Genetics.

[8]  Y. Hiraoka,et al.  Heterochromatin Integrity Affects Chromosome Reorganization After Centromere Dysfunction , 2008, Science.

[9]  J. Dalgaard,et al.  Identification of a Novel Type of Spacer Element Required for Imprinting in Fission Yeast , 2011, PLoS genetics.

[10]  K. Takegawa,et al.  Functional Characterization of Alanine Racemase fromSchizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase , 2001, Journal of bacteriology.

[11]  P. Baumann,et al.  TER1, the RNA subunit of fission yeast telomerase , 2008, Nature Structural &Molecular Biology.

[12]  R. Martienssen,et al.  CENP-B preserves genome integrity at replication forks paused by Retrotransposon LTR , 2010, Nature.

[13]  L. Steinmetz,et al.  Bidirectional promoters generate pervasive transcription in yeast , 2009, Nature.

[14]  L. Clarke,et al.  Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci , 1993, Molecular and cellular biology.

[15]  B. Barrell,et al.  The genome sequence of Schizosaccharomyces pombe , 2002, Nature.

[16]  D. Beach,et al.  Cell type switching by DNA transposition in fission yeast , 1983, Nature.

[17]  Ming Zhou,et al.  Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs , 2009, Nature.

[18]  A. Klar,et al.  A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating-type switching in fission yeast. , 1997, Genetics.

[19]  C. Casola,et al.  Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. , 2007, Molecular biology and evolution.

[20]  J. Dalgaard,et al.  RNase-sensitive DNA modification(s) initiates S. pombe mating-type switching. , 2004, Genes & development.

[21]  C. Shimoda,et al.  Autoregulated expression of Schizosaccharomyces pombe meiosis-specific transcription factor Mei4 and a genome-wide search for its target genes. , 2000, Genetics.

[22]  Brett Milash,et al.  Dynamic transcriptome of Schizosaccharomyces pombe shown by RNA-DNA hybrid mapping , 2008, Nature Genetics.

[23]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[24]  I. Goodhead,et al.  Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution , 2008, Nature.

[25]  A. Klar,et al.  A novel switch‐activating site (SAS1) and its cognate binding factor (SAP1) required for efficient mat1 switching in Schizosaccharomyces pombe. , 1991, The EMBO journal.

[26]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[27]  J. Potashkin,et al.  Analysis of the splicing machinery in fission yeast: a comparison with budding yeast and mammals. , 2000, Nucleic acids research.

[28]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[29]  N. Friedman,et al.  Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species , 2010, Genome Biology.

[30]  S. Grewal,et al.  The Prevalence and Regulation of Antisense Transcripts in Schizosaccharomyces pombe , 2010, PloS one.

[31]  N. Friedman,et al.  Natural history and evolutionary principles of gene duplication in fungi , 2007, Nature.

[32]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[33]  K. Takegawa,et al.  The gld1+ gene encoding glycerol dehydrogenase is required for glycerol metabolism in Schizosaccharomyces pombe , 2010, Applied Microbiology and Biotechnology.

[34]  J. Piškur,et al.  How did Saccharomyces evolve to become a good brewer? , 2006, Trends in genetics : TIG.

[35]  N. Friedman,et al.  Comprehensive comparative analysis of strand-specific RNA sequencing methods , 2010, Nature Methods.

[36]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[37]  L. Johnston,et al.  Control of DNA synthesis genes in fission yeast by the cell-cycle gene cdclO + , 1992, Nature.

[38]  Tobias Straub,et al.  Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae , 2010, Nature Structural &Molecular Biology.

[39]  R. Egel,et al.  The pedigree pattern of mating-type switching in Schizosaccharomyces pombe , 1984, Current Genetics.

[40]  M. Smith,et al.  Four mating‐type genes control sexual differentiation in the fission yeast. , 1988, The EMBO journal.

[41]  T. Petit,et al.  Carbohydrate and energy-yielding metabolism in non-conventional yeasts. , 2000, FEMS microbiology reviews.

[42]  F. Antequera,et al.  Organization of DNA replication origins in the fission yeast genome , 1999, The EMBO journal.

[43]  S. Grewal,et al.  Host genome surveillance for retrotransposons by transposon-derived proteins , 2008, Nature.

[44]  S. Grewal RNAi-dependent formation of heterochromatin and its diverse functions. , 2010, Current opinion in genetics & development.