Particles approximations of Vlasov equations with singular forces : Propagation of chaos
暂无分享,去创建一个
[1] E. Horst,et al. On the asymptotic growth of the solutions of the vlasov–poisson system , 1993 .
[2] A. Guillin,et al. On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.
[3] P. Jabin,et al. Stability of trajectories for N-particle dynamics with a singular potential , 2010, 1004.2177.
[4] Maxime Hauray,et al. On Liouville transport equation with a force field in $BV_{loc}$ , 2013, 1310.0976.
[5] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[6] Free Transport Limit for N-particles Dynamics with Singular and Short Range Potential , 2008 .
[7] R. McCann. STABLE ROTATING BINARY STARS AND FLUID IN A TUBE , 2006 .
[8] Jack Schaeffer,et al. Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .
[9] Stephen Wollman. On the Approximation of the Vlasov-Poisson System by Particle Methods , 2000, SIAM J. Numer. Anal..
[10] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[11] Herbert Spohn,et al. Statistical mechanics of the isothermal lane-emden equation , 1982 .
[12] H. Spohn. Large Scale Dynamics of Interacting Particles , 1991 .
[13] M. Hauray. Mean field limit for the one dimensional Vlasov-Poisson equation , 2013, 1309.2531.
[14] On the derivation of the one dimensional Vlasov equation , 1986 .
[15] G. Loeper. Uniqueness of the solution to the Vlasov-Poisson system with bounded density , 2005 .
[16] A. Sznitman. Topics in propagation of chaos , 1991 .
[17] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[18] Thomas Y. Hou,et al. Convergence of the point vortex method for the 2-D euler equations , 1990 .
[19] M. Kiessling. Statistical mechanics of classical particles with logarithmic interactions , 1993 .
[20] Thomas Y. Hou,et al. New stability estimates for the 2‐D vortex method , 1991 .
[21] H. M.,et al. On Liouville Transport Equation with Force Field in BV loc , 2005 .
[22] P. Hartman. Ordinary Differential Equations , 1965 .
[23] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[24] C. Villani. Topics in Optimal Transportation , 2003 .
[25] M. Kac. Foundations of Kinetic Theory , 1956 .
[26] J. Batt. N-particle approximation to the nonlinear Vlasov–Poisson system , 2001 .
[27] C. Birdsall,et al. Plasma Physics via Computer Simulation , 2018 .
[28] L. Ambrosio. Transport Equation and Cauchy Problem for Non-Smooth Vector Fields , 2008 .
[29] C. Chou. The Vlasov equations , 1965 .
[30] C. Villani,et al. Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.
[31] Giovanni Pisante,et al. The Semigeostrophic Equations Discretized in Reference and Dual Variables , 2007 .
[32] Steven Schochet,et al. THE POINT-VORTEX METHOD FOR PERIODIC WEAK SOLUTIONS OF THE 2-D EULER EQUATIONS , 1996 .
[33] Dehnen. A Very Fast and Momentum-conserving Tree Code. , 2000, The Astrophysical journal.
[34] W. Braun,et al. The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .
[35] Donald G. Saari,et al. A global existence theorem for the four-body problem of Newtonian mechanics , 1976 .
[36] École d'été de probabilités de Saint-Flour,et al. Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .
[37] S. Mischler,et al. Kac’s program in kinetic theory , 2011, Inventiones mathematicae.
[38] On simulation methods for Vlasov-Poisson systems with particles initially asymptotically distributed , 1991 .
[39] M. Hauray. WASSERSTEIN DISTANCES FOR VORTICES APPROXIMATION OF EULER-TYPE EQUATIONS , 2009 .
[40] Jos'e Antonio Carrillo,et al. Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.
[41] A Note on the Eigenvalue Density of Random Matrices , 1998, math-ph/9804006.
[42] P. Lions,et al. Ordinary differential equations, transport theory and Sobolev spaces , 1989 .
[43] Hirofumi Osada,et al. Propagation of chaos for the two dimensional Navier-Stokes equation , 1986 .
[44] P. Hut,et al. Gravitational N-body Simulations , 2008, 0806.3950.
[45] Y. Grigoryev,et al. Numerical "Particle-in-Cell" Methods: Theory and Applications , 2002 .
[46] P. Parseval,et al. Structure of the { 001 } talc surface as seen by atomic force 1 microscopy : Comparison with X-ray and electron diffraction 2 results 3 4 , 2006 .
[47] O. Lanford. Time evolution of large classical systems , 1975 .
[48] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[49] E. Boissard. Problèmes d'interaction discret-continu et distances de Wasserstein , 2011 .
[50] Pierre-Emmanuel Jabin,et al. N-particles Approximation of the Vlasov Equations with Singular Potential , 2003, math/0310039.
[51] M. Kiessling. On the equilibrium statistical mechanics of isothermal classical self-gravitating matter , 1989 .
[52] Zhihong Xia,et al. The existence of noncollision singularities in newtonian systems , 1992 .
[53] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[54] K. Pfaffelmoser,et al. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .
[55] F. Gao. Moderate Deviations and Large Deviations for Kernel Density Estimators , 2003 .
[56] C. Villani,et al. Entropy and chaos in the Kac model , 2008, 0808.3192.
[57] Emanuele Caglioti,et al. A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .
[58] B. M. Fulk. MATH , 1992 .
[59] Thierry Champion,et al. The ∞-Wasserstein Distance: Local Solutions and Existence of Optimal Transport Maps , 2008, SIAM J. Math. Anal..
[60] H. D. Victory,et al. On the convergence of particle methods for multidimensional Vlasov-Poisson systems , 1989 .
[61] D. Saari. Improbability of collisions in Newtonian gravitational systems , 1971 .
[62] Pierre-Louis Lions,et al. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .
[63] J. Yukich,et al. Asymptotics for transportation cost in high dimensions , 1995 .
[64] José Carlos Goulart de Siqueira,et al. Differential Equations , 1919, Nature.