Particles approximations of Vlasov equations with singular forces : Propagation of chaos

We obtain the mean field limit and the propagation of chaos for a system of particles interacting with a singular interaction force of the type $1/|x|^\alpha$, with $\alpha <1$ in dimension $d \geq 3$. We also provide results for forces with singularity up to $\alpha < d-1$ but with large enough cut-off. This last result thus almost includes the most interesting case of Coulombian or gravitational interaction, but it is also interesting when the strength of the singularity $\alpha$ is larger but close to one, in which case it allows for very small cut-off.

[1]  E. Horst,et al.  On the asymptotic growth of the solutions of the vlasov–poisson system , 1993 .

[2]  A. Guillin,et al.  On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.

[3]  P. Jabin,et al.  Stability of trajectories for N-particle dynamics with a singular potential , 2010, 1004.2177.

[4]  Maxime Hauray,et al.  On Liouville transport equation with a force field in $BV_{loc}$ , 2013, 1310.0976.

[5]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[6]  Free Transport Limit for N-particles Dynamics with Singular and Short Range Potential , 2008 .

[7]  R. McCann STABLE ROTATING BINARY STARS AND FLUID IN A TUBE , 2006 .

[8]  Jack Schaeffer,et al.  Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .

[9]  Stephen Wollman On the Approximation of the Vlasov-Poisson System by Particle Methods , 2000, SIAM J. Numer. Anal..

[10]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[11]  Herbert Spohn,et al.  Statistical mechanics of the isothermal lane-emden equation , 1982 .

[12]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[13]  M. Hauray Mean field limit for the one dimensional Vlasov-Poisson equation , 2013, 1309.2531.

[14]  On the derivation of the one dimensional Vlasov equation , 1986 .

[15]  G. Loeper Uniqueness of the solution to the Vlasov-Poisson system with bounded density , 2005 .

[16]  A. Sznitman Topics in propagation of chaos , 1991 .

[17]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[18]  Thomas Y. Hou,et al.  Convergence of the point vortex method for the 2-D euler equations , 1990 .

[19]  M. Kiessling Statistical mechanics of classical particles with logarithmic interactions , 1993 .

[20]  Thomas Y. Hou,et al.  New stability estimates for the 2‐D vortex method , 1991 .

[21]  H. M.,et al.  On Liouville Transport Equation with Force Field in BV loc , 2005 .

[22]  P. Hartman Ordinary Differential Equations , 1965 .

[23]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[24]  C. Villani Topics in Optimal Transportation , 2003 .

[25]  M. Kac Foundations of Kinetic Theory , 1956 .

[26]  J. Batt N-particle approximation to the nonlinear Vlasov–Poisson system , 2001 .

[27]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[28]  L. Ambrosio Transport Equation and Cauchy Problem for Non-Smooth Vector Fields , 2008 .

[29]  C. Chou The Vlasov equations , 1965 .

[30]  C. Villani,et al.  Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces , 2005, math/0503123.

[31]  Giovanni Pisante,et al.  The Semigeostrophic Equations Discretized in Reference and Dual Variables , 2007 .

[32]  Steven Schochet,et al.  THE POINT-VORTEX METHOD FOR PERIODIC WEAK SOLUTIONS OF THE 2-D EULER EQUATIONS , 1996 .

[33]  Dehnen A Very Fast and Momentum-conserving Tree Code. , 2000, The Astrophysical journal.

[34]  W. Braun,et al.  The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .

[35]  Donald G. Saari,et al.  A global existence theorem for the four-body problem of Newtonian mechanics , 1976 .

[36]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[37]  S. Mischler,et al.  Kac’s program in kinetic theory , 2011, Inventiones mathematicae.

[38]  On simulation methods for Vlasov-Poisson systems with particles initially asymptotically distributed , 1991 .

[39]  M. Hauray WASSERSTEIN DISTANCES FOR VORTICES APPROXIMATION OF EULER-TYPE EQUATIONS , 2009 .

[40]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[41]  A Note on the Eigenvalue Density of Random Matrices , 1998, math-ph/9804006.

[42]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[43]  Hirofumi Osada,et al.  Propagation of chaos for the two dimensional Navier-Stokes equation , 1986 .

[44]  P. Hut,et al.  Gravitational N-body Simulations , 2008, 0806.3950.

[45]  Y. Grigoryev,et al.  Numerical "Particle-in-Cell" Methods: Theory and Applications , 2002 .

[46]  P. Parseval,et al.  Structure of the { 001 } talc surface as seen by atomic force 1 microscopy : Comparison with X-ray and electron diffraction 2 results 3 4 , 2006 .

[47]  O. Lanford Time evolution of large classical systems , 1975 .

[48]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[49]  E. Boissard Problèmes d'interaction discret-continu et distances de Wasserstein , 2011 .

[50]  Pierre-Emmanuel Jabin,et al.  N-particles Approximation of the Vlasov Equations with Singular Potential , 2003, math/0310039.

[51]  M. Kiessling On the equilibrium statistical mechanics of isothermal classical self-gravitating matter , 1989 .

[52]  Zhihong Xia,et al.  The existence of noncollision singularities in newtonian systems , 1992 .

[53]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[54]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .

[55]  F. Gao Moderate Deviations and Large Deviations for Kernel Density Estimators , 2003 .

[56]  C. Villani,et al.  Entropy and chaos in the Kac model , 2008, 0808.3192.

[57]  Emanuele Caglioti,et al.  A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .

[58]  B. M. Fulk MATH , 1992 .

[59]  Thierry Champion,et al.  The ∞-Wasserstein Distance: Local Solutions and Existence of Optimal Transport Maps , 2008, SIAM J. Math. Anal..

[60]  H. D. Victory,et al.  On the convergence of particle methods for multidimensional Vlasov-Poisson systems , 1989 .

[61]  D. Saari Improbability of collisions in Newtonian gravitational systems , 1971 .

[62]  Pierre-Louis Lions,et al.  Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .

[63]  J. Yukich,et al.  Asymptotics for transportation cost in high dimensions , 1995 .

[64]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.