Micromagnetic modeling of domain wall motion in sub-100-nm-wide wires with individual and periodic edge defects

Reducing the switching energy of devices that rely on magnetic domain wall motion requires scaling the devices to widths well below 100 nm, where the nanowire line edge roughness (LER) is an inherent source of domain wall pinning. We investigate the effects of periodic and isolated rectangular notches, triangular notches, changes in anisotropy, and roughness measured from images of fabricated wires, in sub-100-nm-wide nanowires with in-plane and perpendicular magnetic anisotropy using micromagnetic modeling. Pinning fields calculated for a model based on discretized images of physical wires are compared to experimental measurements. When the width of the domain wall is smaller than the notch period, the domain wall velocity is modulated as the domain wall propagates along the wire. We find that in sub-30-nm-wide wires, edge defects determine the operating threshold and domain wall dynamics.

[1]  G. Durin,et al.  Current-driven domain wall mobility in polycrystalline Permalloy nanowires: A numerical study , 2014 .

[2]  Supriyo Bandyopadhyay,et al.  Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits , 2009, Nanotechnology.

[3]  Vincent Cros,et al.  Current-induced motion and pinning of domain walls in spin-valve nanowires studied by XMCD-PEEM , 2010 .

[4]  Lars Bocklage,et al.  Direct observation of stochastic domain-wall depinning in magnetic nanowires. , 2009, Physical review letters.

[5]  R. Sugita,et al.  Influence of Notch Shape and Size on Current-Driven Domain Wall Motions in a Magnetic Nanowire , 2008, IEEE Transactions on Magnetics.

[6]  Geoffrey S. D. Beach,et al.  Current-induced domain wall motion , 2008 .

[7]  G. Tallarida,et al.  Perpendicular magnetic anisotropy in Ta/CoFeB/MgO systems synthesized on treated SiN/SiO2 substrates for magnetic memories , 2013 .

[8]  Current-induced domain wall motion: Domain wall velocity fluctuations , 2009 .

[9]  Oscar Alejos,et al.  Thermal effects in domain wall motion: Micromagnetic simulations and analytical model , 2007 .

[10]  E. R. Lewis,et al.  Measuring domain wall fidelity lengths using a chirality filter. , 2009, Physical review letters.

[11]  J. Katine,et al.  Role of pinning in current driven domain wall motion in wires with perpendicular anisotropy , 2008 .

[12]  Xiangrong Wang,et al.  Domain wall pinning in notched nanowires , 2014 .

[13]  J. Spear,et al.  Determination of grain size distributions in magnetic recording media by grazing incidence X-ray diffraction , 2001 .

[14]  Jacques Miltat,et al.  Faster magnetic walls in rough wires , 2003, Nature materials.

[15]  Donghai Wang,et al.  Magnetic cobalt nanowire thin films. , 2005, The journal of physical chemistry. B.

[16]  Shunsuke Fukami,et al.  Analysis of current-driven domain wall motion from pinning sites in nanostrips with perpendicular magnetic anisotropy , 2008 .

[17]  D Bedau,et al.  Temperature dependence of the spin torque effect in current-induced domain wall motion. , 2006, Physical review letters.

[18]  H. Ohno,et al.  Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire , 2011 .

[19]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[20]  Polymethyl methacrylate/hydrogen silsesquioxane bilayer resist electron beam lithography process for etching 25 nm wide magnetic wires , 2014 .

[21]  Mahdi Jamali,et al.  Metastable magnetic domain wall dynamics , 2011, 1110.0175.

[22]  Shunsuke Fukami,et al.  Relation between critical current of domain wall motion and wire dimension in perpendicularly magnetized Co/Ni nanowires , 2009 .

[23]  Y Suzuki,et al.  Micromagnetic understanding of current-driven domain wall motion in patterned nanowires , 2005 .

[24]  C. Ross,et al.  Low Energy Magnetic Domain Wall Logic in Short, Narrow, Ferromagnetic Wires , 2012, IEEE Magnetics Letters.

[25]  Luc Thomas,et al.  Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. , 2006, Physical review letters.

[26]  S. Armyanov Crystallographic structure and magnetic properties of electrodeposited cobalt and cobalt alloys , 2000 .

[27]  E. R. Lewis,et al.  Fast domain wall motion in magnetic comb structures. , 2010, Nature materials.

[28]  E. R. Lewis,et al.  Mechanism for domain wall pinning and potential landscape modification by artificially patterned traps in ferromagnetic nanowires , 2009 .

[29]  R. Mattheis,et al.  Magnetic domain wall pinning by kinks in magnetic nanostripes , 2012 .

[30]  Mathias Kläui,et al.  Head-to-head domain walls in magnetic nanostructures , 2008 .

[31]  C. Marrows,et al.  Citation for Published Item , 2022 .

[32]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[33]  H. Fangohr,et al.  Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires , 2011, 1104.3010.