Deep-sea smokers: windows to a subsurface biosphere?

[1]  T. Gold,et al.  The deep, hot biosphere. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Deming,et al.  Kinetics of peptide hydrolysis and amino acid decomposition at high temperature. , 1993, Geochimica et cosmochimica acta.

[3]  M. Lilley,et al.  Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system , 1993, Nature.

[4]  M. Lilley,et al.  Methane oxidation in deep-sea hydrothermal plumes of the endeavour segment of the Juan de Fuca Ridge , 1993 .

[5]  J. Baross,et al.  Enhanced thermotolerance and temperature-induced changes in protein composition in the hyperthermophilic archaeon ES4 , 1993, Journal of bacteriology.

[6]  John R. Delaney,et al.  Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge , 1992 .

[7]  H. Jannasch,et al.  Comparative Physiological Studies on Hyperthermophilic Archaea Isolated from Deep-Sea Hot Vents with Emphasis on Pyrococcus Strain GB-D , 1992, Applied and environmental microbiology.

[8]  Everett L. Shock,et al.  Stability of peptides in high-temperature aqueous solutions , 1992 .

[9]  J. Baross,et al.  In situ microbial ecology of hydrothermal vent sediments , 1992 .

[10]  D. Clark,et al.  High-pressure, high-temperature bioreactor for comparing effects of hyperbaric and hydrostatic pressure on bacterial growth , 1992, Applied and Environmental Microbiology.

[11]  S. Bush Academy issues report on Yucca Mountain , 1992 .

[12]  D. Clark,et al.  Effects of Hyperbaric Pressure on a Deep-Sea Archaebacterium in Stainless Steel and Glass-Lined Vessels , 1991, Applied and environmental microbiology.

[13]  W. Baumeister,et al.  A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. , 1991, The EMBO journal.

[14]  H. Fricke,et al.  Pyrodictium abyssi sp. nov. Represents a Novel Heterotrophic Marine Archaeal Hyperthermophile Growing at 110°C , 1991 .

[15]  J. Deming,et al.  Effects of Hydrostatic Pressure on Growth of Hyperthermophilic Archaebacteria from the Juan de Fuca Ridge , 1991, Applied and environmental microbiology.

[16]  J. B. Guckert,et al.  Archaebacterial ether lipid diversity analyzed by supercritical fluid chromatography: integration with a bacterial lipid protocol. , 1991, Journal of lipid research.

[17]  G. Antranikian,et al.  Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus , 1990 .

[18]  W. M. Vos,et al.  Characterization of pyrolysin, a hyperthermoactive serine protease from the archaebacterium Pyrococcus furiosus. , 1990 .

[19]  R. Kelly,et al.  Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C , 1990, Journal of bacteriology.

[20]  R. Colwell,et al.  Particulate DNA in Smoker Fluids: Evidence for Existence of Microbial Populations in Hot Hydrothermal Systems , 1990, Applied and environmental microbiology.

[21]  R. Huber,et al.  Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount , 1990, Nature.

[22]  E. Shock Do amino acids equilibrate in hydrothermal fluids , 1990 .

[23]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species , 1990 .

[24]  K. Stetter,et al.  Archaeoglobus profundus sp. nov., Represents a New Species within the Sulfate-reducing Archaebacteria , 1990 .

[25]  T. Pinkau,et al.  Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12 , 1990, Journal of bacteriology.

[26]  R. Huber,et al.  A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C , 1989, Nature.

[27]  J. Baross,et al.  Characterization of an Extremely Thermophilic Archaebacterium Isolated from a Black Smoker Polychaete (Paralvinella sp.) at the Juan de Fuca Ridge , 1989 .

[28]  D. Nelson,et al.  Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site , 1989, Nature.

[29]  R. Rosenbauer,et al.  Salinity Variations in Submarine Hydrothermal Systems by Layered Double-Diffusive Convection , 1989, The Journal of Geology.

[30]  G. Massoth,et al.  Submarine venting of phase-separated hydrothermal fluids at Axial Volcano, Juan de Fuca Ridge , 1989, Nature.

[31]  M. Adams,et al.  A novel and remarkably thermostable ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus , 1989, Journal of bacteriology.

[32]  M. Adams,et al.  Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. , 1989, The Journal of biological chemistry.

[33]  D. Clark,et al.  Pressure and Temperature Effects on Growth and Methane Production of the Extreme Thermophile Methanococcus jannaschii , 1988, Applied and environmental microbiology.

[34]  Y. Fouquet,et al.  Filamentous iron-silica deposits from modern and ancient hydrothermal sites , 1988 .

[35]  J. Bada,et al.  Submarine hot springs and the origin of life , 1988, Nature.

[36]  R. Kelly,et al.  Extremely Thermophilic Archaebacteria: Biological and Engineering Considerations , 1988 .

[37]  N. Pace,et al.  A microbiological study of Guaymas Basin high temperature hydrothermal vents , 1988 .

[38]  H. Jannasch,et al.  Extremely Thermophilic Fermentative Archaebacteria of the Genus Desulfurococcus from Deep-Sea Hydrothermal Vents , 1988, Applied and environmental microbiology.

[39]  R. Jaenicke,et al.  High-Pressure Equipment for Growing Methanogenic Microorganisms on Gaseous Substrates at High Temperature , 1987, Applied and environmental microbiology.

[40]  Holger W. Jannasch,et al.  Staphylothermus marinus sp. nov. Represents a Novel Genus of Extremely Thermophilic Submarine Heterotrophic Archaebacteria Growing up to 98 °C , 1986 .

[41]  J. Deming,et al.  Solid Medium for Culturing Black Smoker Bacteria at Temperatures to 120°C , 1986 .

[42]  Ray F. Weiss,et al.  Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise , 1985 .

[43]  T. D. Brock Life at High Temperatures , 1985, Science.

[44]  M. Mottl,et al.  Geomicrobiology of Deep-Sea Hydrothermal Vents , 1985, Science.

[45]  H. Yanagawa,et al.  Thermophilic microspheres of peptide-like polymers and silicates formed at 250°C , 1985 .

[46]  K. Nickerson,et al.  A hypothesis on the role of pressure in the origin of life. , 1984, Journal of theoretical biology.

[47]  Robert H. White Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 °C , 1984, Nature.

[48]  A. Martinez-Arias,et al.  Role of an upstream regulatory element in leucine repression of the Saccharomyces cerevisiae leu2 gene , 1984, Nature.

[49]  J. Trent,et al.  Possible artefactual basis for apparent bacterial growth at 250 °C , 1984, Nature.

[50]  A. Yayanos,et al.  Reproduction of Bacillus stearothermophilus as a Function of Temperature and Pressure , 1983, Applied and environmental microbiology.

[51]  Jody W. Deming,et al.  Growth of ‘black smoker’ bacteria at temperatures of at least 250 °C , 1983, Nature.

[52]  M. Lilley,et al.  Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria? , 1982 .

[53]  W. Zillig,et al.  Desulfurococcaceae, the Second Family of the Extremely Thermophilic, Anaerobic, Sulfur-Respiring Thermoproteales , 1982 .

[54]  Robert J Collier,et al.  Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data , 1979 .

[55]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[56]  J. Baross,et al.  Preliminary description and nutritional characterization of a chemoorganotrophic archaeobacterium growing at temperatures of up to 110 ° isolated from a submarine hydrothermal vent environment , 1991 .

[57]  D. Butterfield Phase separation in submarine hydrothermal systems: evidence from the Juan de Fuca Ridge , 1990 .

[58]  J. Deming THERMOPHILIC BACTERIA ASSOCIATED WITH BLACK SMOKERS ALONG THE EAST PACIFIC RISE , 1986 .

[59]  J. Deming,et al.  The role of bacteria in the ecology of black-smoker environments , 1985 .

[60]  Denis Norton,et al.  Theory of Hydrothermal Systems , 1984 .

[61]  M. Lilley,et al.  Reduced Gases and Bacteria in Hydrothermal Fluids: The Galapagos Spreading Center and 21°N East Pacific Rise , 1983 .

[62]  J. Baross,et al.  An Hypothesis Concerning the Relationships Between Submarine Hot Springs and the Origin of Life on Earth , 1981 .