Toward a spectral theory of cellular sheaves

This paper outlines a program in what one might call spectral sheaf theory --- an extension of spectral graph theory to cellular sheaves. By lifting the combinatorial graph Laplacian to the Hodge Laplacian on a cellular sheaf of vector spaces over a regular cell complex, one can relate spectral data to the sheaf cohomology and cell structure in a manner reminiscent of spectral graph theory. This work gives an exploratory introduction, and includes results on eigenvalue interlacing, complex sparsification, effective resistance, synchronization, and sheaf approximation. These results and subsequent applications are prefaced by an introduction to cellular sheaves and Laplacians.

[1]  A. S. Morse,et al.  Coordination of Groups of Mobile Autonomous Agents , 2004 .

[2]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[3]  Bei Wang,et al.  Towards Spectral Sparsification of Simplicial Complexes Based on Generalized Effective Resistance , 2017, ArXiv.

[4]  C. Heunen,et al.  Limits in dagger categories , 2018, 1803.06651.

[5]  R. Ho Algebraic Topology , 2022 .

[6]  A. Patel,et al.  Persistent local systems , 2018, 1805.02539.

[7]  Amit Singer,et al.  A Cheeger Inequality for the Graph Connection Laplacian , 2012, SIAM J. Matrix Anal. Appl..

[8]  Florian Dörfler,et al.  Kron Reduction of Graphs With Applications to Electrical Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Shang-Hua Teng,et al.  Nearly-Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems , 2006, SIAM J. Matrix Anal. Appl..

[10]  Shreyas Sundaram,et al.  Spectral properties of the grounded Laplacian matrix with applications to consensus in the presence of stubborn agents , 2014, 2014 American Control Conference.

[11]  Tatiana Mantuano Discretization of Vector Bundles and Rough Laplacian , 2006 .

[12]  Cristiane M. Sato,et al.  Sparse Sums of Positive Semidefinite Matrices , 2011, TALG.

[13]  Michael Robinson,et al.  Sheaves are the canonical data structure for sensor integration , 2017, Inf. Fusion.

[14]  Shang-Hua Teng,et al.  Spectral Sparsification of Graphs , 2008, SIAM J. Comput..

[15]  Joel Friedman,et al.  Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture , 2011, 1105.0129.

[16]  Ori Parzanchevski Mixing in High-Dimensional Expanders , 2017, Comb. Probab. Comput..

[17]  George J. Pappas,et al.  Stable flocking of mobile agents, part I: fixed topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[18]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[19]  Y. Peres,et al.  Probability on Trees and Networks , 2017 .

[20]  Sayan Mukherjee,et al.  The Geometry of Synchronization Problems and Learning Group Actions , 2016, Discrete & Computational Geometry.

[21]  R. Abraham,et al.  Manifolds, tensor analysis, and applications: 2nd edition , 1988 .

[22]  Fouad El Zein,et al.  Local Systems and Constructible Sheaves , 2009 .

[23]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[24]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[25]  M. Gromov Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .

[26]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[27]  Amit Singer,et al.  Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy II—The Class Averaging Problem , 2011, Found. Comput. Math..

[28]  Ojas D. Parekh,et al.  On Factor Width and Symmetric H-matrices , 2005 .

[29]  Tingran Gao The Diffusion Geometry of Fibre Bundles , 2016 .

[30]  A. Singer,et al.  Vector diffusion maps and the connection Laplacian , 2011, Communications on pure and applied mathematics.

[31]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[32]  坂上 貴之 書評 Computational Homology , 2005 .

[33]  Fan Chung Graham,et al.  Ranking and Sparsifying a Connection Graph , 2012, WAW.

[34]  R. Kenyon Spanning forests and the vector bundle Laplacian , 2010, 1001.4028.

[35]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[36]  Sanjeevi Krishnan,et al.  Positive Alexander Duality for Pursuit and Evasion , 2017, SIAM J. Appl. Algebra Geom..

[37]  Ori Parzanchevski,et al.  Isoperimetric inequalities in simplicial complexes , 2012, Comb..

[38]  Anders Björner,et al.  Posets, Regular CW Complexes and Bruhat Order , 1984, Eur. J. Comb..

[39]  George J. Pappas,et al.  Stable flocking of mobile agents part I: dynamic topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[40]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[41]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[42]  Robert Ghrist,et al.  Elementary Applied Topology , 2014 .

[43]  B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .

[44]  K. Lehrer Social consensus and rational agnoiology , 1975, Synthese.

[45]  J. Jost,et al.  Spectra of combinatorial Laplace operators on simplicial complexes , 2011, 1105.2712.

[46]  J. Curry Sheaves, Cosheaves and Applications , 2013, 1303.3255.

[47]  Masaki Kashiwara,et al.  Persistent homology and microlocal sheaf theory , 2017, J. Appl. Comput. Topol..

[48]  S. I. Gelʹfand,et al.  Methods of Homological Algebra , 1996 .

[49]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[50]  Austin R. Benson,et al.  Random Walks on Simplicial Complexes and the normalized Hodge Laplacian , 2018, SIAM Rev..

[51]  Bassam Bamieh,et al.  Interaction-driven opinion dynamics in online social networks , 2010, SOMA '10.

[52]  Dragoš Cvetković,et al.  Graph spectra in Computer Science , 2011 .

[53]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[54]  A. Bandeira Convex Relaxations for Certain Inverse Problems on Graphs , 2015 .

[55]  Michael Robinson,et al.  Assignments to sheaves of pseudometric spaces , 2018, Compositionality.

[56]  John Joseph Steenbergen,et al.  Towards a Spectral Theory for Simplicial Complexes , 2013 .

[57]  J. Friedman,et al.  Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.

[58]  M. Degroot Reaching a Consensus , 1974 .

[59]  Felipe Cucker,et al.  The Shape of Data , 2012 .

[60]  R. Ghrist,et al.  Euler Calculus with Applications to Signals and Sensing , 2012, 1202.0275.

[61]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[62]  Motoko Kotani,et al.  Discrete Geometric Analysis , 2004 .

[63]  Daniel A. Spielman Linear-time encodable and decodable error-correcting codes , 1996, IEEE Trans. Inf. Theory.

[64]  On Kirchhoff’s theorems with coefficients in a line bundle , 2012, 1207.2822.