Tilings associated with beta-numeration and substitutions.

This paper surveys different constructions and properties of some multiple tilings (that is, finite-to-one coverings) of the space that can be associated with beta-numeration and substitutions. It is indeed possible, generalizing Rauzy’s and Thurston’s constructions, to associate in a natural way either with a Pisot number β (of degree d) or with a Pisot substitution σ (on d letters) some compact basic tiles that are the closure of their interior, that have non-zero measure and a fractal boundary; they are attractors of some graph- directed Iterated Function System. We know that some translates of these prototiles under a Delone set Γ (provided by β or σ) cover Rd−1; it is conjectured that this multiple tiling is indeed a tiling (which might be either periodic or self-replicating according to the translation set Γ). This conjecture is known as the Pisot conjecture and can also be reformulated in spectral terms: the associated dynamical systems have pure discrete spectrum. We detail here the known constructions for these tilings, their main properties, some applications, and focus on some equivalent formulations of the Pisot conjecture, in the theory of quasicrystals for instance. We state in particular for Pisot substitutions a finiteness property analogous to the well-known (F) property in beta-numeration, which is a sufficient condition to get a tiling.

[1]  Christian F. Skau,et al.  Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.

[2]  D. Lind The entropies of topological Markov shifts and a related class of algebraic integers , 1984, Ergodic Theory and Dynamical Systems.

[3]  Charles Radin,et al.  Space tilings and substitutions , 1995 .

[4]  Frédérique Bassino Beta-Expansions for Cubic Pisot Numbers , 2002, LATIN.

[5]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[6]  Shigeki Akiyama,et al.  Connectedness of number theoretical tilings , 2005, Discret. Math. Theor. Comput. Sci..

[7]  F. Durand,et al.  Sur les ensembles d'entiers reconnaissables , 2008, 0801.0556.

[8]  Shigeki Akiyama,et al.  Connectedness of number theoretic tilings , 2004 .

[9]  V. Sirvent Geodesic laminations as geometric realizations of Pisot substitutions , 2000, Ergodic Theory and Dynamical Systems.

[10]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[11]  K. Schmidt,et al.  Symbolic representations of nonexpansive group automorphisms , 2004, math/0409257.

[12]  J. Vidal,et al.  Generalized quasiperiodic Rauzy tilings , 2000 .

[13]  Brigitte Mossé,et al.  Puissances de mots et reconnaissabilité des point fixes d'une substitution , 1992, Theor. Comput. Sci..

[14]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[15]  A. Messaoudi Propriétés arithmétiques et dynamiques du fractal de Rauzy , 1998 .

[16]  L. Zamboni,et al.  Directed Graphs and Substitutions , 2001, Theory of Computing Systems.

[17]  Yang Wang,et al.  Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .

[18]  Shigeki Akiyama,et al.  Pisot numbers and greedy algorithm , 1998 .

[19]  Shigeki Akiyama A self-similar tiling generated by the minimal Pisot number , 1998 .

[20]  Shunji Ito,et al.  Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions , 2006 .

[21]  Boris Solomyak,et al.  Conjugates of Beta-Numbers and the Zero-Free Domain for a Class of Analytic Functions , 1994 .

[22]  A. Messaoudi,et al.  Frontiere du fractal de Rauzy et systeme de numeration complexe , 2000 .

[23]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[24]  A. Janner,et al.  The nature of the atomic surfaces of quasiperiodic self-similar structures , 1993 .

[25]  P. Paufler,et al.  Quasicrystals and Geometry , 1997 .

[26]  Marcy Barge,et al.  Elements of the theory of unimodular Pisot substitutions with an application to β-shifts , 2005 .

[27]  A. Siegel,et al.  Pure discrete spectrum dynamical system and periodic tiling associated with a substitution , 2004 .

[28]  Shigeki Akiyama,et al.  Generalized radix representations and dynamical systems. I , 2005 .

[29]  David W. Boyd,et al.  On the beta expansion for Salem numbers of degree 6 , 1996, Math. Comput..

[30]  Shigeki Akiyama,et al.  Cubic Pisot units with finite beta expansions , 2004 .

[31]  Jean-Marie Dumont,et al.  Systemes de Numeration et Fonctions Fractales Relatifs aux Substitutions , 1989, Theor. Comput. Sci..

[32]  Rémy Mosseri,et al.  Generalized Rauzy tilings: construction and electronic properties , 2000 .

[33]  Enrico Bombieri,et al.  Which distributions of matter diffract? An initial investigation , 1986 .

[34]  Pierre Arnoux,et al.  Higher dimensional extensions of substitutions and their dual maps , 2001 .

[35]  J. J. P. Veerman,et al.  Hausdorff Dimension of Boundaries of Self-Affine Tiles In R N , 1997, math/9701215.

[36]  N. B. Slater,et al.  The distribution of the integers N for which {θN} < φ , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Fabien Durand,et al.  A Generalization of Cobham's Theorem , 1998, Theory of Computing Systems.

[38]  Marcy Barge,et al.  Coincidence for substitutions of Pisot type , 2002 .

[39]  V. Berthé,et al.  Purely periodic β-expansions in the Pisot non-unit case , 2007 .

[40]  A. Messaoudi,et al.  Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci , 2001 .

[41]  Hui Rao,et al.  A CERTAIN FINITENESS PROPERTY OF PISOT NUMBER SYSTEMS , 2004 .

[42]  Jörg M. Thuswaldner,et al.  Unimodular Pisot substitutions and their associated tiles , 2006 .

[43]  G. Rauzy,et al.  Sequences defined by iterated morphisms , 1990 .

[44]  Dominique Perrin Symbolic Dynamics and Finite Automata , 1995, MFCS.

[45]  Michel Rigo,et al.  Abstract $\beta $-expansions and ultimately periodic representations , 2005 .

[46]  V. Sirvent The common dynamics of the tribonacci substitutions , 2000 .

[47]  Yves Meyer,et al.  Quasicrystals, Diophantine approximation and algebraic numbers , 1995 .

[48]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[49]  E. Robinson,et al.  The dynamical properties of Penrose tilings , 1996 .

[50]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[51]  Marcy Barge,et al.  Geometric theory of unimodular Pisot substitutions , 2006 .

[52]  G. Rauzy Rotations sur les groupes, nombres algébriques, et substitutions , 1988 .

[53]  Makoto Ohtsuki,et al.  Parallelogram Tilings and Jacobi-Perron Algorithm , 1994 .

[54]  F. M. Dekking,et al.  The spectrum of dynamical systems arising from substitutions of constant length , 1978 .

[55]  David W. Boyd Salem numbers of degree four have periodic expansions , 1989 .

[56]  Yves Meyer,et al.  Algebraic numbers and harmonic analysis , 1972 .

[57]  Timo Jolivet,et al.  Substitutions , 2002, Peach State.

[58]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[59]  Boris Solomyak,et al.  Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.

[60]  Jean Marie Dumont,et al.  Digital sum moments and substitutions , 1993 .

[61]  Hui Rao,et al.  Atomic surfaces, tilings and coincidence I. irreducible case , 2006 .

[62]  Richard Kenyon The construction of self-similar tilings , 1995 .

[63]  Shunji Ito,et al.  Tilings from some non-irreducible, Pisot substitutions , 2005, Discret. Math. Theor. Comput. Sci..

[64]  Nikita Szidorov Ergodic-theoretic properties of certain Bernoulli convolutions , 2003 .

[65]  Christiane Frougny,et al.  Beta-Integers as a Group , 2000 .

[66]  François Blanchard beta-Expansions and Symbolic Dynamics , 1989, Theor. Comput. Sci..

[67]  Jean-Pierre Gazeau,et al.  Beta-integers as natural counting systems for quasicrystals , 1998 .

[68]  Michael Baake,et al.  Digit tiling of euclidean space , 2000 .

[69]  Richard Kenyon,et al.  Arithmetic construction of sofic partitions of hyperbolic toral automorphisms , 1998, Ergodic Theory and Dynamical Systems.

[70]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[71]  Jeffrey C. Lagarias,et al.  Substitution Delone Sets , 2003, Discret. Comput. Geom..

[72]  Reinhard Klette,et al.  Digital planarity - A review , 2007, Discret. Appl. Math..

[73]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[74]  A. Siegel,et al.  Geometric representation of substitutions of Pisot type , 2001 .

[75]  Pierre Arnoux,et al.  Two-dimensional iterated morphisms and discrete planes , 2004, Theor. Comput. Sci..

[76]  John W. Cahn,et al.  Quasicrystals , 2001, Journal of research of the National Institute of Standards and Technology.

[77]  K. Schmidt,et al.  On Periodic Expansions of Pisot Numbers and Salem Numbers , 1980 .

[78]  Makoto Ohtsuki,et al.  Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms , 1993 .

[79]  Anne Siegel,et al.  Représentation des systèmes dynamiques substitutifs non unimodulaires , 2003, Ergodic Theory and Dynamical Systems.

[80]  Y. Bugeaud,et al.  Sur la complexité des nombres algébriques , 2004 .

[81]  A. Siegel,et al.  Automate des pr'efixes-suffixes associ'e ` a une substitution primitive , 1999 .

[82]  Jean-Pierre Gazeau,et al.  Geometric study of the beta-integers for a Perron number and mathematical quasicrystals , 2004 .

[83]  Brenda Praggastis,et al.  Numeration systems and Markov partitions from self similar tilings , 1999 .

[84]  Jean-Pierre Reveillès Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .

[85]  Damien Roy Approximation to real numbers by cubic algebraic integers I , 2002 .

[86]  Minako Kimura,et al.  On Rauzy fractal , 1991 .

[87]  Shigeki Akiyama,et al.  On the boundary of self affine tilings generated by Pisot numbers , 2002 .

[88]  François Blanchard,et al.  NUMBER REPRESENTATION AND FINITE AUTOMATA , 2000 .

[89]  N. Sidorov Ergodic-theoretic properties of certain Bernoulli convolutions , 2002, math/0203056.

[90]  R. Moody Meyer Sets and Their Duals , 1997 .

[91]  Klaus Schmidt,et al.  Algebraic Coding of Expansive Group Automorphisms and Two-sided Beta-Shifts , 2000 .

[93]  Pierre Arnoux,et al.  Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions , 2002 .

[94]  R. Daniel Mauldin,et al.  Hausdorff dimension in graph directed constructions , 1988 .

[95]  K. Lau,et al.  On the Connectedness of Self‐Affine Tiles , 2000 .

[96]  K. Sigmund,et al.  Ergodic Theory on Compact Spaces , 1976 .

[97]  E. Robinson Symbolic Dynamics and Tilings of R d , 2004 .

[98]  Randolph B. Tarrier,et al.  Groups , 1973, Algebra.

[99]  Brigitte Mosse,et al.  Properties of words and recognizability of fixed points of a substitution , 1992 .