Morphological and functional effects of graphene on the synthesis of uranium carbide for isotopes production targets

[1]  R. Hunt,et al.  Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon , 2018 .

[2]  A. Fabrizi,et al.  Graphene derived lanthanum carbide targets for the SPES ISOL facility , 2017 .

[3]  J. Conradie,et al.  South African Isotope Facility , 2017 .

[4]  J. P. Ramos,et al.  Target nanomaterials at CERN-ISOLDE: synthesis and release data , 2016 .

[5]  F. Ames,et al.  Extraction and low energy beam transport from a surface ion source at the TRIUMF-ISAC facility , 2016 .

[6]  H. Jang,et al.  Start-to-end simulation for the RISP test facility , 2015 .

[7]  Mattia Manzolaro,et al.  The RIB production target for the SPES project , 2015 .

[8]  R. Konings,et al.  TEM study of alpha-damaged plutonium and americium dioxides , 2015 .

[9]  A. Sasahara,et al.  Effect of burn-up on the thermal conductivity of uranium-gadolinium dioxide up to 100 GWd/tHM , 2014 .

[10]  G. Prete,et al.  Research and development on materials for the SPES target , 2014 .

[11]  B. Back,et al.  Astrophysics experiments with radioactive beams at ATLAS , 2014 .

[12]  P. Rutkowski,et al.  Thermal stability and conductivity of hot-pressed Si3N4–graphene composites , 2014, Journal of Thermal Analysis and Calorimetry.

[13]  T. Stora Recent developments of target and ion sources to produce ISOL beams , 2013 .

[14]  M. A. Fütterer,et al.  Generation IV Reactor Safety and Materials Research by the Institute for Energy and Transport at the European Commission’s Joint Research Centre , 2013 .

[15]  S. Grasso,et al.  Review of graphene–ceramic matrix composites , 2013 .

[16]  Ruiqin Q. Zhang,et al.  Strong Adsorption Between Uranium Dicarbide and Graphene Surface Induced by f Electrons , 2013, 1310.4328.

[17]  P. Colombo,et al.  Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype , 2013 .

[18]  R. Konings,et al.  Recent Results of Microstructural Characterization of Irradiated Light Water Reactor Fuels using Scanning and Transmission Electron Microscopy , 2012 .

[19]  M. Belmonte,et al.  Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures , 2012 .

[20]  M. Dupuis,et al.  Status of the ion sources developments for the Spiral2 project at GANIL. , 2012, The Review of scientific instruments.

[21]  I. Pioro,et al.  Thermal Aspects of Uranium Carbide and Uranium Dicarbide Fuels in Supercritical Water-Cooled Nuclear Reactors , 2011 .

[22]  P. Colombo,et al.  Developing uranium dicarbide–graphite porous materials for the SPES project , 2010 .

[23]  G. Panneerselvam,et al.  Heat Capacity and Thermal Expansion of Uranium-Gadolinium Mixed Oxides , 2009 .

[24]  P. Bricault,et al.  Composite ceramic targets for high power proton irradiation , 2008 .

[25]  F. Ames,et al.  PROGRESS IN DEVELOPMENT OF ISOL RIB ION SOURCES AND TARGETS FOR HIGH POWER , 2007 .

[26]  J. Nolen,et al.  Characterization studies of prototype ISOL targets for the RIA , 2005 .

[27]  J. L. Smith,et al.  Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system , 2003 .

[28]  J. K. Fink,et al.  Thermophysical properties of uranium dioxide , 2000 .

[29]  D. Halton,et al.  ADVANCES IN THE USE OF LASER-FLASH TECHNIQUES FOR THERMAL DIFFUSIVITY MEASUREMENT , 1998 .

[30]  S. Mukerjee,et al.  Kinetics and mechanism of UO2 + C reaction for UCUC2 preparation , 1994 .

[31]  S. Mukerjee,et al.  Kinetic study of the carbothermic synthesis of uranium monocarbide microspheres , 1990 .

[32]  W. J. Lackey,et al.  Rate‐Controlling Factors in the Carbothermic Preparation of UO2‐UC2‐C Microspheres , 1979 .

[33]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.