Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals

Predictions of observable properties by density-functional theory calculations (DFT) are used increasingly often by experimental condensed-matter physicists and materials engineers as data. These predictions are used to analyze recent measurements, or to plan future experiments in a rational way. Increasingly more experimental scientists in these fields therefore face the natural question: what is the expected error for such a first-principles prediction? Information and experience about this question is implicitly available in the computational community, scattered over two decades of literature. The present review aims to summarize and quantify this implicit knowledge. This eventually leads to a practical protocol that allows any scientist—experimental or theoretical—to determine justifiable error estimates for many basic property predictions, without having to perform additional DFT calculations. A central role is played by a large and diverse test set of crystalline solids, containing all ground-state elemental crystals (except most lanthanides). For several properties of each crystal, the difference between DFT results and experimental values is assessed. We discuss trends in these deviations and review explanations suggested in the literature. A prerequisite for such an error analysis is that different implementations of the same first-principles formalism provide the same predictions. Therefore, the reproducibility of predictions across several mainstream methods and codes is discussed too. A quality factor Δ expresses the spread in predictions from two distinct DFT implementations by a single number. To compare the PAW method to the highly accurate APW+lo approach, a code assessment of VASP and GPAW (PAW) with respect to WIEN2k (APW+lo) yields Δ-values of 1.9 and 3.3 meV/atom, respectively. In both cases the PAW potentials recommended by the respective codes have been used. These differences are an order of magnitude smaller than the typical difference with experiment, and therefore predictions by APW+lo and PAW are for practical purposes identical.

[1]  Eberhard Engel,et al.  RELATIVISTIC OPTIMIZED-POTENTIAL METHOD : EXACT TRANSVERSE EXCHANGE AND MOLLER-PLESSET-BASED CORRELATION POTENTIAL , 1998 .

[2]  L. H. Bolz,et al.  A reexamination of the crystal structures of α and β nitrogen , 1959 .

[3]  D. Riley,et al.  The thermal expansion of graphite from 15?c. to 800?c.: part I. Experimental , 1945 .

[4]  Elisabeth Sjöstedt,et al.  Efficient linearization of the augmented plane-wave method , 2001 .

[5]  John P. Perdew,et al.  Molecular and solid‐state tests of density functional approximations: LSD, GGAs, and meta‐GGAs , 1999 .

[6]  K. Capelle,et al.  A bird's-eye view of density-functional theory , 2002 .

[7]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[8]  Zi-kui Liu,et al.  First-principles calculations of pure elements: Equations of state and elastic stiffness constants , 2010 .

[9]  A. Masago,et al.  Crystal stability of α-and β-boron , 2006 .

[10]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[11]  Janak,et al.  Calculated thermal properties of metals. , 1988, Physical review. B, Condensed matter.

[12]  D. Losee,et al.  Thermal-Expansion Measurements and Thermodynamics of Solid Krypton , 1968 .

[13]  Y. L. Page,et al.  Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations , 2001 .

[14]  I. Bersuker Limitations of density functional theory in application to degenerate states , 1997, J. Comput. Chem..

[15]  Beate Paulus,et al.  Lattice structure of mercury: Influence of electronic correlation , 2006 .

[16]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[17]  Rickard Armiento,et al.  Nonequivalence of the generalized gradient approximations PBE and PW91 , 2006 .

[18]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[19]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[20]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[21]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[22]  K. Schwarz,et al.  Insight into the performance of GGA functionals for solid-state calculations , 2009 .

[23]  M. Stiles,et al.  Erratum: Local-density-functional calculations of the energy of atoms [Phys. Rev. A 55, 191 (1997)] , 1997 .

[24]  Cohen,et al.  First-principles study of the structural properties of alkali metals. , 1986, Physical review. B, Condensed matter.

[25]  Eric R. Scerri Explaining the periodic table, and the role of chemical triads , 2010 .

[26]  Veronique Van Speybroeck,et al.  The ground state elemental crystals as a benchmark set for solid state DFT: intrinsic accuracy and code comparison , 2012 .

[27]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[28]  J. Hopfield,et al.  Failure of the Born–Oppenheimer and Franck–Condon approximations for long distance electron transfer rate calculations , 1984 .

[29]  P. Blaha,et al.  Calculation of the lattice constant of solids with semilocal functionals , 2009 .

[30]  S. Batsanov,et al.  Effects of Explosions on Materials , 1994 .

[31]  G. Shirane,et al.  Lattice dynamics of solid neon at 6.5 and 23.7 K , 1975 .

[32]  Matt Probert,et al.  A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction , 2006, cond-mat/0605066.

[33]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[34]  Baerends,et al.  Cohesive energy of 3d transition metals: Density functional theory atomic and bulk calculations. , 1996, Physical review. B, Condensed matter.

[35]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[36]  P. Pyykkö The physics behind chemistry and the periodic table. , 2012, Chemical reviews.

[37]  Alim Borisovich Alchagirov,et al.  Equations of state motivated by the stabilized jellium model , 2001 .

[38]  D. G. Pettifor,et al.  Bonding and Structure of Molecules and Solids , 1995 .

[39]  C. A. Swenson PHASE TRANSITION IN SOLID MERCURY , 1958 .

[40]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[41]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[42]  G. Kennedy,et al.  Phase diagram of manganese to 40 kbars , 1965 .

[43]  W. Foulkes,et al.  Ab initio calculations of bulk moduli and comparison with experiment , 2002 .

[44]  Paul Saxe,et al.  Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress , 2002 .

[45]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  Gerbrand Ceder,et al.  Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research , 2006 .

[47]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[48]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[49]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[50]  Spain,et al.  Germanium at high pressures. , 1986, Physical review. B, Condensed matter.

[51]  Mario Valle,et al.  Transparent dense sodium , 2009, Nature.

[52]  Ashkenazi,et al.  Magnetism with generalized-gradient-approximation density functionals. , 1992, Physical review. B, Condensed matter.

[53]  R. Simmons,et al.  Measurements of X-Ray Lattice Constant, Thermal Expansivity, and Isothermal Compressibility of Argon Crystals , 1966 .

[54]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[55]  Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials , 2011, 1503.02043.

[56]  G. White,et al.  Thermal expansion of Cr and Cr-V alloys , 1983 .

[57]  R. Pawar,et al.  Anisotropic thermal expansion of arsenic , 1970 .

[58]  D. Batchelder,et al.  Measurement of the elastic constants of argon from 3 to 77 degrees K , 1970 .

[59]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[60]  Mark D. Stiles,et al.  LOCAL-DENSITY-FUNCTIONAL CALCULATIONS OF THE ENERGY OF ATOMS , 1997 .

[61]  Wilfried B. Holzapfel Comment on “Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model” , 2003 .

[62]  D. D. Richardson,et al.  Van der Waals contribution to the binding energy of noble metals , 1977 .

[63]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[64]  D. Pettifor,et al.  van der Waals interactions in the ground state of Mg(BH4)2from density functional theory , 2011, 1104.1784.

[65]  T. Scott Solid and liquid nitrogen , 1976 .

[66]  Takemura Kenichi Bulk modulus of osmium: High-pressure powder x-ray diffraction experiments under quasihydrostatic conditions , 2004 .

[67]  C. Barrett,et al.  Crystal Structure of a-Fluorine , 1968 .

[68]  Changfeng Chen,et al.  Calculation of bulk modulus for highly anisotropic materials , 2004 .

[69]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[70]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[71]  Stephan Lany,et al.  Semiconductor Thermochemistry in Density Functional Calculations , 2008 .

[72]  C. Ross Found , 1869, The Dental register.

[73]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[74]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[75]  Takemura,et al.  Stability and the equation of state of alpha -manganese under ultrahigh pressure. , 1995, Physical review. B, Condensed matter.

[76]  Georg Kresse,et al.  The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. , 2005, The Journal of chemical physics.

[77]  I. Sigalas,et al.  Determination of the thermal expansion of orthorhombic sulfur , 1986 .

[78]  P. Villars,et al.  Atomic-environment classification of the chemical elements , 1993 .

[79]  D. Losee,et al.  Measurements of Lattice Constant, Thermal Expansion, and Isothermal Compressibility of Neon Single Crystals , 1967 .

[80]  Peter Blaha,et al.  Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional , 2007 .

[81]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[82]  David L. Price,et al.  Lattice Dynamics of Grey Tin and Indium Antimonide , 1971 .

[83]  Luo,et al.  beta -Po phase of sulfur at 162 GPa: X-ray diffraction study to 212 GPa. , 1993, Physical review letters.

[84]  A N Kolmogorov,et al.  New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.

[85]  Shun-Li Shang,et al.  First-principles elastic constants of α- and θ-Al2O3 , 2007 .

[86]  J. Evers,et al.  Lattice dynamics of strontium and barium , 1984 .

[87]  K. Kokko,et al.  Assessing the Perdew-Burke-Ernzerhof exchange-correlation density functional revised for metallic bulk and surface systems , 2007, 0711.3747.

[88]  M. Morinaga,et al.  Estimation of linear thermal expansion coefficient from cohesive energy obtained by ab-initio calculation of metals and ceramics , 2010 .

[89]  D. Steinberg,et al.  Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements , 1974 .

[90]  J. Perdew,et al.  Assessing the performance of recent density functionals for bulk solids , 2009, 0903.4037.

[91]  P. Blaha,et al.  Erratum: Calculation of the lattice constant of solids with semilocal functionals [Phys. Rev. B 79, 085104 (2009)] , 2009 .

[92]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[93]  E. Knittle Static Compression Measurements of Equations of State , 2013 .

[94]  G. Scuseria,et al.  Erratum: Tests of a ladder of density functionals for bulk solids and surfaces [Phys. Rev. B69, 075102 (2004)] , 2008 .

[95]  Beate Paulus,et al.  Understanding the hcp anisotropy in Cd and Zn: the role of electron correlation in determining the potential energy surface. , 2010, Physical chemistry chemical physics : PCCP.

[96]  S. Batsanov Effects of Explosions on Materials: Modification and Synthesis Under High-Pressure Shock Compression , 1994 .

[97]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[98]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[99]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[100]  D. Neck,et al.  Many-Body Theory Exposed! , 2005 .

[101]  J. Hafner,et al.  Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn , 2003 .

[102]  G. Shirane,et al.  Inelastic neutron scattering from solid krypton at 10 °K , 1974 .

[103]  Louise Poissant Part I , 1996, Leonardo.

[104]  Mark E. Oxley,et al.  Binary, ternary and quaternary compound former/nonformer prediction via Mendeleev number , 2001 .

[105]  W. David,et al.  addenda and errata , 2006 .

[106]  A. Kuwabara,et al.  Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations , 2006 .

[107]  D. R. Sears,et al.  Density and Expansivity of Solid Xenon , 1962 .

[108]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[109]  N. A. Lurie,et al.  Temperature dependence of the zero-sound elastic constants of crystalline xenon , 1974 .

[110]  Georg Kresse,et al.  Comparison of the full-potential and frozen-core approximation approaches to density-functional calculations of surfaces , 2005, cond-mat/0509014.

[111]  E. Baerends,et al.  Atomic reference energies for density functional calculations , 1997 .

[112]  B. Liu,et al.  Four-parameter equation of state and determination of the thermal and mechanical properties of metals , 2007 .

[113]  Blazej Grabowski,et al.  Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends , 2007 .

[114]  Anubhav Jain,et al.  Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability , 2012 .

[115]  K. Heal,et al.  The temperature dependence of the crystal structures of the solid halogens, bromine and chlorine , 1984 .

[116]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[117]  Andrew G. Glen,et al.  APPL , 2001 .

[118]  N. L. Abraham,et al.  Improved real-space genetic algorithm for crystal structure and polymorph prediction , 2008 .

[119]  F Mittendorfer,et al.  Accurate surface and adsorption energies from many-body perturbation theory. , 2010, Nature materials.

[120]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[121]  Zi-kui Liu,et al.  Effects of alloying elements on elastic properties of Ni by first-principles calculations , 2009 .

[122]  N. Pace,et al.  The elastic constants and interatomic binding forces in arsenic , 1970 .

[123]  J. Neugebauer,et al.  Vacancy formation energies in fcc metals: Influence of exchange-correlation functionals and correction schemes , 2012 .

[124]  Jianmin Tao,et al.  Tests of a ladder of density functionals for bulk solids and surfaces , 2004 .

[125]  E. Engel,et al.  Exchange-correlation and QED effects from a density functional based level shift approach , 2005 .

[126]  Beate Paulus,et al.  Structural and electronic properties of Mg, Zn, and Cd from Hartree-Fock and density functional calculations including hybrid functionals , 2007 .

[127]  C. Kittel Introduction to solid state physics , 1954 .

[128]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[129]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[130]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[131]  M. Degroot,et al.  Probability and Statistics , 1977 .

[132]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[133]  E. J. Baerends,et al.  Relativistic calculations to assess the ability of the generalized gradient approximation to reproduce trends in cohesive properties of solids , 2000 .

[134]  D. Koelling,et al.  A technique for relativistic spin-polarised calculations , 1977 .

[135]  C. Swenson,et al.  Experimental compressions for sodium, potassium, and rubidium metals to 20 kbar from 4.2 to 300 K , 1983 .

[136]  M. Hill Alkali and alkaline earth metals , 2007 .

[137]  G. Vaitheeswaran,et al.  Effect of van der Waals interactions on the structural and elastic properties of black phosphorus , 2012, 1211.3512.

[138]  Walter Wolf,et al.  Ab Initio thermodynamic and elastic properties of alkaline-earth metals and their hydrides , 2007 .

[139]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[140]  Ozolins,et al.  Full-potential calculations using the generalized gradient approximation: Structural properties of transition metals. , 1993, Physical review. B, Condensed matter.

[141]  Technical University of Denmark,et al.  Exchange energy in the local Airy gas approximation , 2000, cond-mat/0005292.

[142]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[143]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[144]  Syassen,et al.  Rhombohedral to simple-cubic phase transition in arsenic under pressure. , 1990, Physical review. B, Condensed matter.