Ultrastable environment control for the NEID spectrometer: design and performance demonstration

Abstract. Two key areas of emphasis in contemporary experimental exoplanet science are the detailed characterization of transiting terrestrial planets and the search for Earth analog planets to be targeted by future imaging missions. Both of these pursuits are dependent on an order-of-magnitude improvement in the measurement of stellar radial velocities (RV), setting a requirement on single-measurement instrumental uncertainty of order 10  cm  /  s. Achieving such extraordinary precision on a high-resolution spectrometer requires thermomechanically stabilizing the instrument to unprecedented levels. We describe the environment control system (ECS) of the NEID spectrometer, which will be commissioned on the 3.5-m WIYN Telescope at Kitt Peak National Observatory in 2019, and has a performance specification of on-sky RV precision <50  cm  /  s. Because NEID’s optical table and mounts are made from aluminum, which has a high coefficient of thermal expansion, sub-milliKelvin temperature control is especially critical. NEID inherits its ECS from that of the Habitable-Zone Planet Finder (HPF), but with modifications for improved performance and operation near room temperature. Our full-system stability test shows the NEID system exceeds the already impressive performance of HPF, maintaining vacuum pressures below 10  −  6  Torr and a root mean square (RMS) temperature stability better than 0.4 mK over 30 days. Our ECS design is fully open-source; the design of our temperature-controlled vacuum chamber has already been made public, and here we release the electrical schematics for our custom temperature monitoring and control system.

[1]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[2]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[3]  Debra A. Fischer,et al.  THE TWENTY-FIVE YEAR LICK PLANET SEARCH , 2013, 1310.7315.

[4]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[5]  Basil Blank,et al.  Environmental control system for Habitable-zone Planet Finder (HPF) , 2014, Astronomical Telescopes and Instrumentation.

[6]  R. P. Butler,et al.  DETERMINING SPECTROMETER INSTRUMENTAL PROFILES USING FTS REFERENCE SPECTRA , 1995 .

[7]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[8]  Claire Poppett,et al.  KPF: Keck Planet Finder , 2016, Astronomical Telescopes + Instrumentation.

[9]  Chuck Henderson,et al.  APOGEE cryostat design , 2010, Astronomical Telescopes + Instrumentation.

[10]  Robert O. Reynolds,et al.  The iLocater cryostat: design and thermal control strategy for precision radial velocity measurements , 2016, Astronomical Telescopes + Instrumentation.

[11]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[12]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[13]  F Bayer-Helms Langzeitige Längenänderungen der Glaskeramik «Zerodur» als auswirkung eines Diffusionsvorganges , 1987 .

[14]  Jason Wright,et al.  A comprehensive radial velocity error budget for next generation Doppler spectrometers , 2016, Astronomical Telescopes + Instrumentation.

[15]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[16]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[17]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[18]  Paul Robertson,et al.  The Habitable-zone Planet Finder: A status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby-Eberly telescope , 2014, Astronomical Telescopes and Instrumentation.

[19]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[20]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[21]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[22]  Christian Schwab,et al.  A VERSATILE TECHNIQUE TO ENABLE SUB-MILLI-KELVIN INSTRUMENT STABILITY FOR PRECISE RADIAL VELOCITY MEASUREMENTS: TESTS WITH THE HABITABLE-ZONE PLANET FINDER , 2016, 1610.06216.

[23]  R. P. Butler,et al.  ATTAINING DOPPLER PRECISION OF 3 M S-1 , 1996 .

[24]  F. Bouchy,et al.  Fundamental photon noise limit to radial velocity measurements , 2001 .

[25]  Olivier Guyon,et al.  Infrared Doppler instrument (IRD) for the Subaru telescope to search for Earth-like planets around nearby M-dwarfs , 2014, Astronomical Telescopes and Instrumentation.

[26]  C. Schwab,et al.  Design of NEID, an extreme precision Doppler spectrograph for WIYN , 2016, Astronomical Telescopes + Instrumentation.

[27]  Gerardo Avila,et al.  Performance verification of HARPS: first laboratory results , 2003, SPIE Astronomical Telescopes + Instrumentation.