Science data visualization in planetary and heliospheric contexts with 3DView

Abstract We present a 3D orbit viewer application capable of displaying science data. 3DView, a web tool designed by the French Plasma Physics Data Center (CDPP) for the planetology and heliophysics community, has extended functionalities to render space physics data (observations and models alike) in their original 3D context. Time series, vectors, dynamic spectra, celestial body maps, magnetic field or flow lines, 2D cuts in simulation cubes, etc, are among the variety of data representation enabled by 3DView. The direct connection to several large databases, the use of VO standards and the possibility to upload user data makes 3DView a versatile tool able to cover a wide range of space physics contexts. The code is open source and the software is regularly used at Masters Degree level or summer school for pedagogical purposes. The present paper describes the general architecture and all major functionalities, and offers several science cases (simulation rendering, mission preparation, etc.) which can be easily replayed by the interested readers. Future developments are finally outlined.

[1]  Daniel N. Baker,et al.  MESSENGER observations of Mercury's magnetosphere during northward IMF , 2009 .

[2]  M. Gangloff,et al.  TREPS, a tool for coordinate and time transformations in space physics , 2018 .

[3]  S. Krimigis,et al.  A new form of Saturn's magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements , 2010 .

[4]  M. W. Dunlop,et al.  The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results , 2001 .

[5]  François Leblanc,et al.  3D magnetospheric parallel hybrid multi-grid method applied to planet-plasma interactions , 2016, J. Comput. Phys..

[6]  Aaron Roberts,et al.  A new multivariate time series data analysis technique: Automated detection of flux transfer events using Cluster data , 2009 .

[7]  Chao Shen,et al.  The Double Star mission , 2005 .

[8]  M. Lester,et al.  Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields , 2008 .

[9]  D. Intriligator,et al.  An empirical model of the Venusian outer environment 2. The shape and location of the bow shock , 1980 .

[10]  B. Anderson,et al.  The Magnetometer Instrument on MESSENGER , 2007 .

[11]  M. L. Mays,et al.  Interplanetary coronal mass ejection observed at STEREO‐A, Mars, comet 67P/Churyumov‐Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU , 2017 .

[12]  Pierre Le Sidaner,et al.  The Auroral Planetary Imaging and Spectroscopy (APIS) service , 2015, Astron. Comput..

[13]  Barry H. Mauk,et al.  The Energetic Particle and Plasma Spectrometer Instrument on the MESSENGER Spacecraft , 2007 .

[14]  M. Gangloff,et al.  The LatHyS database for planetary plasma environment investigations: Overview and a case study of data/model comparisons , 2018 .

[15]  S. Solomon,et al.  MESSENGER Mission Overview , 2007 .

[16]  P. Drossart,et al.  JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system , 2013 .

[17]  Nikolai A. Tsyganenko,et al.  Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause , 1995 .

[18]  Daniel N. Baker,et al.  Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations , 2013 .

[19]  M. Dunlop,et al.  Coordinated Cluster and Double Star observations of the dayside magnetosheath and magnetopause at different latitudes near noon , 2008 .

[20]  M. Bouchemit,et al.  Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure , 2017 .

[21]  Marco Mancini,et al.  Mars‐solar wind interaction: LatHyS, an improved parallel 3‐D multispecies hybrid model , 2016 .

[22]  M. Acuna,et al.  Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets , 2004 .

[23]  J. Cain,et al.  An n = 90 internal potential function of the Martian crustal magnetic field , 2003 .

[24]  Pekka Janhunen,et al.  Solar wind and magnetospheric ion impact on Mercury's surface , 2003 .

[25]  R. Lundin,et al.  Plasma Morphology at Mars. Aspera-3 Observations , 2007 .

[26]  David G. Sibeck,et al.  Solar wind control of the magnetopause shape, location, and motion , 1991 .

[27]  Christopher T. Russell,et al.  A new functional form to study the solar wind control of the magnetopause size and shape , 1997 .

[28]  J. Eastwood,et al.  Long-Term Tracking of Corotating Density Structures Using Heliospheric Imaging , 2016, 1606.01127.

[29]  P. Fernique,et al.  VESPA: a community-driven Virtual Observatory in Planetary Science , 2016, 1705.09727.

[30]  Baptiste Cecconi,et al.  Joining the yellow hub: Uses of the Simple Application Messaging Protocol in Space Physics analysis tools , 2014, Astron. Comput..

[31]  Nasa Gsfc,et al.  The Cluster mission , 2001 .

[32]  M. Gangloff,et al.  The EPN-TAP protocol for the Planetary Science Virtual Observatory , 2014, Astron. Comput..

[33]  M. Lockwood,et al.  First imaging of corotating interaction regions using the STEREO spacecraft , 2008 .

[34]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[35]  M. Fehringer,et al.  Introduction The Cluster mission , 2001 .

[36]  G. Chanteur,et al.  A global hybrid model for Mercury's interaction with the solar wind: Case study of the dipole representation , 2012 .

[37]  J. Slavin,et al.  An empirical model of Saturn's bow shock: Cassini observations of shock location and shape , 2008 .

[38]  Edward J. Smith,et al.  Solar wind flow about the outer planets - Gas dynamic modeling of the Jupiter and Saturn bow shocks , 1985 .

[39]  J. Slavin,et al.  Influence of the solar wind magnetic field on the Earth and Mercury magnetospheres in the paraboloidal model , 2013 .

[40]  N. André,et al.  A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures , 2017, 1702.00399.

[41]  Peter. Dyson,et al.  A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions , 2007 .