Absolute frequency measurement of the 1S0 – 3P0 transition of 171Yb

We report the absolute frequency measurement of the unperturbed transition 1S0 -3P0 at 578 nm in 171Yb realized in an optical lattice frequency standard relative to a cryogenic caesium fountain. The measurement result is 518 295 836 590 863.59(31) Hz with a relative standard uncertainty of 5.9×10−16. This value is in agreement with the ytterbium frequency recommended as a secondary representation of the second in the International System of Units.

[1]  Davide Calonico,et al.  Gravitational redshift at INRIM , 2007 .

[2]  C W Oates,et al.  Spin-1/2 optical lattice clock. , 2009, Physical review letters.

[3]  T Zelevinsky,et al.  New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. , 2008, Physical review letters.

[4]  L. Lorini,et al.  Efficient frequency doubling at 399 nm. , 2014, Applied optics.

[5]  H. Katori,et al.  Strategies for reducing the light shift in atomic clocks , 2015, 1503.07633.

[6]  M. Pizzocaro,et al.  Active disturbance rejection control of temperature for ultrastable optical cavities , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[7]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[8]  D. Piester,et al.  International timescales with optical clocks (ITOC) , 2013, 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC).

[9]  Feng-Lei Hong,et al.  Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks. , 2014, Optics express.

[10]  A. Bjerhammar,et al.  On a relativistic geodesy , 1985 .

[11]  C W Oates,et al.  p-Wave cold collisions in an optical lattice clock. , 2011, Physical review letters.

[12]  Francesca Pennecchi,et al.  The generalized weighted mean of correlated quantities , 2006 .

[13]  Jun Ye,et al.  Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock , 2009, 0906.1419.

[14]  L M Hanssen,et al.  Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty. , 2014, Physical review letters.

[15]  Luca Lorini,et al.  Comparison of two Strontium optical lattice clocks in agreement at the 10−16 level , 2012, 2012 European Frequency and Time Forum.

[16]  Davide Calonico,et al.  Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain , 2014 .

[17]  Kurt Gibble Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions. , 2013, Physical review letters.

[18]  C Sanner,et al.  Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty. , 2016, Physical review letters.

[19]  Jon H. Shirley,et al.  First accuracy evaluation of NIST-F2 , 2014 .

[20]  Hiroshi Munekane,et al.  Geopotential measurements with synchronously linked optical lattice clocks , 2016 .

[21]  K. Gao,et al.  Frequency Comparison of Two (40)Ca(+) Optical Clocks with an Uncertainty at the 10(-17) Level. , 2016, Physical review letters.

[22]  Hidetoshi Katori,et al.  Frequency Ratio of (199)Hg and (87)Sr Optical Lattice Clocks beyond the SI Limit. , 2015, Physical review letters.

[23]  P Gill,et al.  Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. , 2014, Physical review letters.

[24]  M. Takamoto,et al.  Ultrastable optical clock with neutral atoms in an engineered light shift trap , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[25]  Manoj Das,et al.  Frequency ratio of Yb and Sr clocks with 5 × 10 −17 uncertainty at 150 seconds averaging time , 2016 .

[26]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[27]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[28]  Manoj Das,et al.  Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications , 2015 .

[29]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[30]  D. Calonico,et al.  Realization of an ultrastable 578-nm laser for an Yb lattice clock , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  Patrick Gill,et al.  Is the time right for a redefinition of the second by optical atomic clocks? , 2016 .

[32]  Manoj Das,et al.  Cryogenic optical lattice clocks , 2015, Nature Photonics.

[33]  Scott A. Diddams,et al.  Recent atomic clock comparisons at NIST , 2008 .

[34]  Jun Ye,et al.  Probing Interactions Between Ultracold Fermions , 2009, Science.

[35]  P. Lemonde,et al.  Optical lattice clock with atoms confined in a shallow trap (8 pages) , 2005 .

[36]  Yamanaka Kazuhiro,et al.  Frequency Ratio of 199Hg and 87Sr Optical Lattice Clocks beyond the SI Limit , 2015 .

[37]  Long-range interaction coefficients for ytterbium dimers , 2013, 1307.2656.

[38]  G. Petit,et al.  IERS Conventions (2010) , 2010 .

[39]  P. Lemonde,et al.  Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  Uwe Sterr,et al.  Delivering pulsed and phase stable light to atoms of an optical clock , 2012 .

[41]  J. Guéna,et al.  Progress in atomic fountains at LNE-SYRTE , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[42]  M. Takamoto,et al.  Prospects for optical clocks with a blue-detuned lattice. , 2009, Physical review letters.

[43]  Zichao Zhou,et al.  88Sr+ 445-THz single-ion reference at the 10(-17) level via control and cancellation of systematic uncertainties and its measurement against the SI second. , 2012, Physical review letters.

[44]  Massimo Inguscio,et al.  Atomic physics: precise measurements and ultracold matter , 2013 .

[45]  Dai-Hyuk Yu,et al.  Absolute frequency measurement of 1S0 (F = 1/2) - 3P0 (F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS , 2011 .

[46]  P. Gill,et al.  Least-squares analysis of clock frequency comparison data to deduce optimized frequency and frequency ratio values , 2015, 1504.01633.

[47]  C W Oates,et al.  High-accuracy measurement of atomic polarizability in an optical lattice clock. , 2011, Physical review letters.

[48]  C W Oates,et al.  Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice. , 2006, Physical review letters.

[49]  N Quintin,et al.  A clock network for geodesy and fundamental science , 2016, Nature communications.

[50]  P. Rosenbusch,et al.  Experimental realization of an optical second with strontium lattice clocks , 2013, Nature Communications.

[51]  Feng-Lei Hong,et al.  One-Dimensional Optical Lattice Clock with a Fermionic 171Yb Isotope , 2009, 0906.3664.

[52]  Heiner Denker,et al.  Regional Gravity Field Modeling: Theory and Practical Results , 2013 .

[53]  Tomonari Suzuyama,et al.  Improved absolute frequency measurement of the 171 Yb optical lattice clock towards a candidate for the redefinition of the second , 2012 .