Robustness Conditions for MIIV-2SLS When the Latent Variable or Measurement Model is Structurally Misspecified

Most researchers acknowledge that virtually all structural equation models (SEMs) are approximations due to violating distributional assumptions and structural misspecifications. There is a large literature on the unmet distributional assumptions, but much less on structural misspecifications. In this paper, we examine the robustness to structural misspecification of the model implied instrumental variable, two-stage least square (MIIV-2SLS) estimator of SEMs. We introduce two types of robustness: robust-unchanged and robust-consistent. We develop new robustness analytic conditions for MIIV-2SLS and illustrate these with hypothetical models, simulated data, and an empirical example. Our conditions enable a researcher to know whether, for example, a structural misspecification in the latent variable model influences the MIIV-2SLS estimator for measurement model equations and vice versa. Similarly, we establish robustness conditions for correlated errors. The new robustness conditions provide guidance on the types of structural misspecifications that affect parameter estimates and they assist in diagnosing the source of detected problems with MIIVs.

[1]  Kenneth A. Bollen,et al.  Latent Variable Models Under Misspecification: Two-Stage Least Squares (2SLS) and Maximum Likelihood (ML) Estimators , 2007 .

[2]  Steffen Nestler,et al.  A Monte Carlo study comparing PIV, ULS and DWLS in the estimation of dichotomous confirmatory factor analysis. , 2013, The British journal of mathematical and statistical psychology.

[3]  Kenneth A Bollen,et al.  10. Using Instrumental Variable Tests to Evaluate Model Specification in Latent Variable Structural Equation Models , 2009, Sociological methodology.

[4]  R. P. McDonald,et al.  Structural Models and the Art of Approximation , 2010, Perspectives on psychological science : a journal of the Association for Psychological Science.

[5]  Roger E. Millsap,et al.  Doing the Four-Step Right , 2000 .

[6]  Karl G. Jöreskog,et al.  Lisrel 8: User's Reference Guide , 1997 .

[7]  M. Browne Asymptotically distribution-free methods for the analysis of covariance structures. , 1984, The British journal of mathematical and statistical psychology.

[8]  Peter M. Bentler,et al.  8. Assessing the Effect of Model Misspecifications on Parameter Estimates in Structural Equation Models , 2003 .

[9]  D Kaplan,et al.  Asymptomatic Independence and Separability in Convariance Structure Models: Implications for Specification Error, Power, and Model Modification. , 1993, Multivariate behavioral research.

[10]  Shawn Bauldry Miivfind: A Command for Identifying Model-Implied Instrumental Variables for Structural Equation Models in Stata , 2014 .

[11]  Stanislav Kolenikov,et al.  Model-Implied Instrumental Variable—Generalized Method of Moments (MIIV-GMM) Estimators for Latent Variable Models , 2014, Psychometrika.

[12]  Dale N. Glaser,et al.  Jiving the Four-Step, Waltzing Around Factor Analysis, and Other Serious Fun , 2000 .

[13]  Kenneth A. Bollen,et al.  An alternative two stage least squares (2SLS) estimator for latent variable equations , 1996 .

[14]  M. Browne,et al.  Alternative Ways of Assessing Model Fit , 1992 .

[15]  Yasuo Amemiya,et al.  Factor Analysis at 100:Historical Developments and Future Directions , 2003, Multivariate behavioral research.

[16]  Albert Maydeu-Olivares,et al.  A Polychoric Instrumental Variable (PIV) Estimator for Structural Equation Models with Categorical Variables , 2007 .

[17]  Kenneth A. Bollen,et al.  Total, Direct, and Indirect Effects in Structural Equation Models , 1987 .

[18]  Stanislav Kolenikov,et al.  Testing Negative Error Variances , 2012 .

[19]  J. Sargan THE ESTIMATION OF ECONOMIC RELATIONSHIPS USING INSTRUMENTAL VARIABLES , 1958 .

[20]  A Simulation Study of Polychoric Instrumental Variable Estimation in Structural Equation Models , 2016 .

[21]  James C. Anderson,et al.  STRUCTURAL EQUATION MODELING IN PRACTICE: A REVIEW AND RECOMMENDED TWO-STEP APPROACH , 1988 .

[22]  Kenneth A. Bollen,et al.  Automating the Selection of Model-Implied Instrumental Variables , 2004 .

[23]  D Kaplan,et al.  A Study of the Sampling Variability and z-Values of Parameter Estimates From Misspecified Structural Equation Models. , 1989, Multivariate behavioral research.

[24]  L. J. Williams,et al.  Decomposing model fit: measurement vs. theory in organizational research using latent variables. , 2011, The Journal of applied psychology.

[25]  Andreas Ritter,et al.  Structural Equations With Latent Variables , 2016 .

[26]  R. P. McDonald,et al.  Principles and practice in reporting structural equation analyses. , 2002, Psychological methods.

[27]  Ken Kelley,et al.  Diagnosis for Covariance Structure Models by Analyzing the Path , 2008 .