On Lipschitz Analysis and Lipschitz Synthesis for the Phase Retrieval Problem

In this paper we prove two results regarding reconstruction from magnitudes of frame coefficients (the so called "phase retrieval problem"). First we show that phase retrievability as an algebraic property implies that nonlinear maps are bi-Lipschitz with respect to appropriate metrics on the quotient space. Second we prove that reconstruction can be performed using Lipschitz continuous maps. Specifically we show that when nonlinear analysis maps $\alpha,\beta:\hat{H}\rightarrow R^m$ are injective, with $\alpha(x)=(|\langle x,f_k\rangle |)_{k=1}^m$ and $\beta(x)=(|\langle x,f_k \rangle|^2)_{k=1}^m$, where $\{f_1,\ldots,f_m\}$ is a frame for a Hilbert space $H$ and $\hat{H}=H/T^1$, then $\alpha$ is bi-Lipschitz with respect to the class of "natural metrics" $D_p(x,y)= min_{\varphi} || x-e^{i\varphi}y {||}_p$, whereas $\beta$ is bi-Lipschitz with respect to the class of matrix-norm induced metrics $d_p(x,y)=|| xx^*-yy^*{||}_p$. Furthermore, there exist left inverse maps $\omega,\psi:R^m\rightarrow \hat{H}$ of $\alpha$ and $\beta$ respectively, that are Lipschitz continuous with respect to the appropriate metric. Additionally we obtain the Lipschitz constants of these inverse maps in terms of the lower Lipschitz constants of $\alpha$ and $\beta$. Surprisingly the increase in Lipschitz constant is a relatively small factor, independent of the space dimension or the frame redundancy.

[1]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[2]  Peter G. Casazza,et al.  Equivalence of Reconstruction From the Absolute Value of the Frame Coefficients to a Sparse Representation Problem , 2007, IEEE Signal Processing Letters.

[3]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[4]  P. Jaming,et al.  Uniqueness results in an extension of Pauli's phase retrieval problem , 2014 .

[5]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[6]  T. Heinosaari,et al.  Quantum Tomography under Prior Information , 2011, 1109.5478.

[7]  R. Balan A Nonlinear Reconstruction Algorithm from Absolute Value of Frame Coefficients for Low Redundancy Frames , 2010 .

[8]  William Kahan,et al.  Some new bounds on perturbation of subspaces , 1969 .

[9]  A. Oppenheim,et al.  Signal reconstruction from phase or magnitude , 1980 .

[10]  Gilles Blanchard,et al.  On the Convergence of Eigenspaces in Kernel Principal Component Analysis , 2005, NIPS.

[11]  Bernhard G. Bodmann,et al.  Stable phase retrieval with low-redundancy frames , 2013, Adv. Comput. Math..

[12]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[13]  Yang Wang,et al.  Phase retrieval from very few measurements , 2013, ArXiv.

[14]  R. Balan,et al.  On Lipschitz Inversion of Nonlinear Redundant Representations , 2015 .

[15]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2013, SIAM J. Imaging Sci..

[16]  P. Jaming,et al.  Uniqueness results for the phase retrieval problem of fractional Fourier transforms of variable order , 2010, 1009.3418.

[17]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[18]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[19]  J. Seidel,et al.  QUADRATIC FORMS OVER GF(2) , 1973 .

[20]  J. Finkelstein Pure-state informationally complete and "really" complete measurements (3 pages) , 2004 .

[21]  Yang Wang,et al.  Invertibility and Robustness of Phaseless Reconstruction , 2013, Applied and Computational Harmonic Analysis.

[22]  Jae S. Lim,et al.  Signal reconstruction from the short-time Fourier transform magnitude , 1982, ICASSP.

[23]  R. Balan Equivalence relations and distances between Hilbert frames , 1999 .

[24]  R. Balan,et al.  Painless Reconstruction from Magnitudes of Frame Coefficients , 2009 .

[25]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[26]  R. James Milgram,et al.  Immersing Projective Spaces , 1967 .

[27]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[28]  Radu Balan,et al.  Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case , 2012, Found. Comput. Math..

[29]  P. Casazza,et al.  Phase Retrieval By Projections , 2013, 1305.6226.

[30]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[31]  Dustin G. Mixon,et al.  Phase Retrieval with Polarization , 2012, SIAM J. Imaging Sci..

[32]  Radu V. Balan,et al.  On signal reconstruction from its spectrogram , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[33]  R. Bhatia Matrix Analysis , 1996 .

[34]  A general theorem of existence of quasi absolutely minimal Lipschitz extensions , 2012, 1211.5700.

[35]  V. Voroninski,et al.  Determination of all pure quantum states from a minimal number of observables , 2013, 1306.1214.