Regulation of cardiac hypertrophy by intracellular signalling pathways

[1]  E. Olson,et al.  Suppression of Class I and II Histone Deacetylases Blunts Pressure-Overload Cardiac Hypertrophy , 2006, Circulation.

[2]  H. Rockman,et al.  JNK1 is required to preserve cardiac function in the early response to pressure overload. , 2006, Biochemical and biophysical research communications.

[3]  P. Pfluger,et al.  Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Robert D. Gerard,et al.  The Transcriptional Coactivator CAMTA2 Stimulates Cardiac Growth by Opposing Class II Histone Deacetylases , 2006, Cell.

[5]  Anthony J. Muslin,et al.  Akt1 Is Required for Physiological Cardiac Growth , 2006, Circulation.

[6]  B. Aronow,et al.  Myocyte Enhancer Factors 2A and 2C Induce Dilated Cardiomyopathy in Transgenic Mice* , 2006, Journal of Biological Chemistry.

[7]  R. Schwartz,et al.  Cardiac-Specific Deletion of Gata4 Reveals Its Requirement for Hypertrophy, Compensation, and Myocyte Viability , 2006, Circulation research.

[8]  Tong Zhang,et al.  Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. , 2006, The Journal of clinical investigation.

[9]  J. Molkentin Dichotomy of Ca2+ in the heart: contraction versus intracellular signaling. , 2006, The Journal of clinical investigation.

[10]  Anne M Deschamps,et al.  Pathways of matrix metalloproteinase induction in heart failure: bioactive molecules and transcriptional regulation. , 2006, Cardiovascular research.

[11]  M. Jeong,et al.  Inhibition of Histone Deacetylation Blocks Cardiac Hypertrophy Induced by Angiotensin II Infusion and Aortic Banding , 2005, Circulation.

[12]  J. Guan,et al.  Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. , 2005, The Journal of clinical investigation.

[13]  E. Olson,et al.  Control of cardiac growth by histone acetylation/deacetylation. , 2005, Circulation research.

[14]  S. Houser,et al.  Nuclear Targeting of Akt Enhances Ventricular Function and Myocyte Contractility , 2005, Circulation research.

[15]  I. Cohen,et al.  A Transgenic Mouse Model of Heart Failure Using Inducible Gαq* , 2005, Journal of Biological Chemistry.

[16]  J. Molkentin,et al.  Temporally Controlled Onset of Dilated Cardiomyopathy Through Disruption of the SRF Gene in Adult Heart , 2005, Circulation.

[17]  R. DePinho,et al.  Class IA Phosphoinositide 3-Kinase Regulates Heart Size and Physiological Cardiac Hypertrophy , 2005, Molecular and Cellular Biology.

[18]  T. Hewett,et al.  Genetic Inhibition or Activation of JNK1/2 Protects the Myocardium from Ischemia-Reperfusion-induced Cell Death in Vivo* , 2005, Journal of Biological Chemistry.

[19]  I. Shiojima,et al.  Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. , 2005, The Journal of clinical investigation.

[20]  M. Drazner,et al.  Does load-induced ventricular hypertrophy progress to systolic heart failure? , 2005, American journal of physiology. Heart and circulatory physiology.

[21]  M. Baccarini Second nature: Biological functions of the Raf‐1 “kinase” , 2005, FEBS letters.

[22]  R. Dietz,et al.  Requirement of Nuclear Factor-&kgr;B in Angiotensin II– and Isoproterenol-Induced Cardiac Hypertrophy In Vivo , 2005, Circulation.

[23]  Guy Salama,et al.  Calmodulin kinase II inhibition protects against structural heart disease , 2005, Nature Medicine.

[24]  G. Dorn,et al.  Protein kinase cascades in the regulation of cardiac hypertrophy. , 2005, The Journal of clinical investigation.

[25]  J. Molkentin,et al.  Direct and Indirect Interactions between Calcineurin-NFAT and MEK1-Extracellular Signal-Regulated Kinase 1/2 Signaling Pathways Regulate Cardiac Gene Expression and Cellular Growth , 2005, Molecular and Cellular Biology.

[26]  Matthew Loose,et al.  The roles of GATA-4, -5 and -6 in vertebrate heart development. , 2005, Seminars in cell & developmental biology.

[27]  P. Caroni,et al.  Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Kass,et al.  Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy , 2005, Nature Medicine.

[29]  K. Lorenz,et al.  The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy , 2004, Nature Medicine.

[30]  河野 俊一 Blockade of NF-κB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin 2 , 2005 .

[31]  J. Miyazaki,et al.  Mitogen-Activated Protein Kinase Plays a Critical Role in Cardiomyocyte Survival but Not in Cardiac Hypertrophic Growth in Response to Pressure Overload , 2004 .

[32]  A. Ho,et al.  Role of histone deacetylase inhibitors in the treatment of cancer (Review). , 2004, International journal of oncology.

[33]  E. Olson,et al.  Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress , 2004, Nature Medicine.

[34]  R. Hobbs Guidelines for the diagnosis and management of heart failure. , 2004, American journal of therapeutics.

[35]  M. Sano,et al.  Cyclin-Dependent Kinase-9 An RNAPII Kinase at the Nexus of Cardiac Growth and Death Cascades , 2004 .

[36]  Da-Zhi Wang,et al.  Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. , 2004, The Journal of clinical investigation.

[37]  David L. Williams,et al.  NF-κB activation is required for the development of cardiac hypertrophy in vivo , 2004 .

[38]  J. Molkentin,et al.  Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. , 2004, Biochemical and biophysical research communications.

[39]  Rick B. Vega,et al.  Protein Kinases C and D Mediate Agonist-Dependent Cardiac Hypertrophy through Nuclear Export of Histone Deacetylase 5 , 2004, Molecular and Cellular Biology.

[40]  E. Olson,et al.  Histone Deacetylases 5 and 9 Govern Responsiveness of the Heart to a Subset of Stress Signals and Play Redundant Roles in Heart Development , 2004, Molecular and Cellular Biology.

[41]  J. Molkentin Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. , 2004, Cardiovascular research.

[42]  C. Proud Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. , 2004, Cardiovascular research.

[43]  Anthony J. Muslin,et al.  Raf-1 Kinase Is Required for Cardiac Hypertrophy and Cardiomyocyte Survival in Response to Pressure Overload , 2004, Circulation.

[44]  L. Silengo,et al.  PI3Kγ Modulates the Cardiac Response to Chronic Pressure Overload by Distinct Kinase-Dependent and -Independent Effects , 2004, Cell.

[45]  M. Crackower,et al.  The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. , 2004, Journal of molecular and cellular cardiology.

[46]  J. Blenis,et al.  Deletion of Ribosomal S6 Kinases Does Not Attenuate Pathological, Physiological, or Insulin-Like Growth Factor 1 Receptor-Phosphoinositide 3-Kinase-Induced Cardiac Hypertrophy , 2004, Molecular and Cellular Biology.

[47]  S. Izumo,et al.  Inhibition of mTOR Signaling With Rapamycin Regresses Established Cardiac Hypertrophy Induced by Pressure Overload , 2004, Circulation.

[48]  S. Kudoh,et al.  Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II , 2004, Nature Cell Biology.

[49]  D. König,et al.  Ausdauersport und kardiale Adaptation (Sportherz) , 2004, Herz.

[50]  Stefano Fumagalli,et al.  S6K1−/−/S6K2−/− Mice Exhibit Perinatal Lethality and Rapamycin-Sensitive 5′-Terminal Oligopyrimidine mRNA Translation and Reveal a Mitogen-Activated Protein Kinase-Dependent S6 Kinase Pathway , 2004, Molecular and Cellular Biology.

[51]  T. Hewett,et al.  Calcineurin A &bgr; Gene Targeting Predisposes the Myocardium to Acute Ischemia-Induced Apoptosis and Dysfunction , 2004, Circulation research.

[52]  Jian Xu,et al.  Calcineurin/NFAT Coupling Participates in Pathological, but not Physiological, Cardiac Hypertrophy , 2004, Circulation research.

[53]  Y. Ahn,et al.  Nuclear Targeting of Akt Enhances Kinase Activity and Survival of Cardiomyocytes , 2003, Circulation research.

[54]  F. Mayer,et al.  [Endurance training and cardial adaptation (athlete's heart)]. , 2004, Herz.

[55]  E. Olson,et al.  Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. , 2004, Recent progress in hormone research.

[56]  C. Kuan,et al.  c‐Jun N‐terminal kinases (JNK) antagonize cardiac growth through cross‐talk with calcineurin–NFAT signaling , 2003, The EMBO journal.

[57]  P. Kang,et al.  Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Michael D. Schneider,et al.  Sizing up the heart: development redux in disease. , 2003, Genes & development.

[59]  R. Liao,et al.  Deletion of cytosolic phospholipase A2 promotes striated muscle growth , 2003, Nature Medicine.

[60]  I. Komuro,et al.  Roles of cardiac transcription factors in cardiac hypertrophy. , 2003, Circulation research.

[61]  Timothy E Hewett,et al.  Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. , 2003, The Journal of clinical investigation.

[62]  S. Vatner,et al.  Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. , 2003, The Journal of clinical investigation.

[63]  C. O'connor,et al.  Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: review of trials and practical considerations. , 2003, The American journal of cardiology.

[64]  P. Doevendans,et al.  Molecular determinants of myocardial hypertrophy and failure: alternative pathways for beneficial and maladaptive hypertrophy. , 2003, European heart journal.

[65]  F. Dequiedt,et al.  Class II histone deacetylases: versatile regulators. , 2003, Trends in genetics : TIG.

[66]  Q. Liang,et al.  Reengineering Inducible Cardiac-Specific Transgenesis With an Attenuated Myosin Heavy Chain Promoter , 2003, Circulation research.

[67]  J. Molkentin,et al.  Temporal activation of c‐Jun N‐terminal kinase in adult transgenic heart via cre‐loxP‐mediated DNA recombination , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[68]  P. Kang,et al.  Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. , 2003, Trends in molecular medicine.

[69]  W. Manning,et al.  Rapamycin Attenuates Load-Induced Cardiac Hypertrophy in Mice , 2003, Circulation.

[70]  Attila Kovacs,et al.  The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. , 2003, The Journal of clinical investigation.

[71]  A. V. van Kuilenburg,et al.  Histone deacetylases (HDACs): characterization of the classical HDAC family. , 2003, The Biochemical journal.

[72]  Carmen Birchmeier,et al.  ErbB2 pathways in heart and neural diseases. , 2003, Trends in cardiovascular medicine.

[73]  Rick B. Vega,et al.  Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Luigi Fratta,et al.  Melusin, a muscle-specific integrin β1–interacting protein, is required to prevent cardiac failure in response to chronic pressure overload , 2003, Nature Medicine.

[75]  Masahiko Hoshijima,et al.  The Cardiac Mechanical Stretch Sensor Machinery Involves a Z Disc Complex that Is Defective in a Subset of Human Dilated Cardiomyopathy , 2002, Cell.

[76]  J. Molkentin,et al.  Targeted Disruption of NFATc3, but Not NFATc4, Reveals an Intrinsic Defect in Calcineurin-Mediated Cardiac Hypertrophic Growth , 2002, Molecular and Cellular Biology.

[77]  A. Giordano,et al.  Activation and function of cyclin T–Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy , 2002, Nature Medicine.

[78]  Daniel Levy,et al.  Long-term trends in the incidence of and survival with heart failure. , 2002, The New England journal of medicine.

[79]  J. Saffitz,et al.  c-Jun N-Terminal Kinase Activation Mediates Downregulation of Connexin43 in Cardiomyocytes , 2002, Circulation research.

[80]  C. Kahn,et al.  Regulation of Myocardial Contractility and Cell Size by Distinct PI3K-PTEN Signaling Pathways , 2002, Cell.

[81]  J. Ross,et al.  Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Chun Li Zhang,et al.  Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy , 2002, Cell.

[83]  H. Drexler,et al.  Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  S. Cook,et al.  Phenotypic Spectrum Caused by Transgenic Overexpression of Activated Akt in the Heart* , 2002, The Journal of Biological Chemistry.

[85]  Carmen Birchmeier,et al.  Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  J. Molkentin,et al.  Divergent signaling pathways converge on GATA4 to regulate cardiac hypertrophic gene expression. , 2002, Journal of molecular and cellular cardiology.

[87]  Lewis C Cantley,et al.  The phosphoinositide 3-kinase pathway. , 2002, Science.

[88]  Susumu Minamisawa,et al.  ErbB2 is essential in the prevention of dilated cardiomyopathy , 2002, Nature Medicine.

[89]  W. Kolch,et al.  Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. , 2002, Journal of cell science.

[90]  P. Kang,et al.  Akt/Protein Kinase B Promotes Organ Growth in Transgenic Mice , 2002, Molecular and Cellular Biology.

[91]  R. Weiss,et al.  Targeted Inhibition of Calcineurin in Pressure-overload Cardiac Hypertrophy , 2002, The Journal of Biological Chemistry.

[92]  J. Molkentin,et al.  Impaired cardiac hypertrophic response in Calcineurin Aβ-deficient mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[93]  S. Cherry,et al.  Cardiac Myocyte-Specific Excision of the &bgr;1 Integrin Gene Results in Myocardial Fibrosis and Cardiac Failure , 2002, Circulation research.

[94]  P. Doevendans,et al.  Calcineurin and hypertrophic heart disease: novel insights and remaining questions. , 2002, Cardiovascular research.

[95]  Robert J. Lefkowitz,et al.  Seven-transmembrane-spanning receptors and heart function , 2002, Nature.

[96]  E. Olson,et al.  Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[97]  C. Trautwein,et al.  Gene Transfer of cGMP-Dependent Protein Kinase I Enhances the Antihypertrophic Effects of Nitric Oxide in Cardiomyocytes , 2002, Hypertension.

[98]  R. Ross,et al.  Integrins and the myocardium. , 2001, Genetic engineering.

[99]  Hiroshi Asanuma,et al.  Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy , 2002, Nature Medicine.

[100]  W. Koch,et al.  Genetic Alterations That Inhibit In Vivo Pressure-Overload Hypertrophy Prevent Cardiac Dysfunction Despite Increased Wall Stress , 2002, Circulation.

[101]  K. Chien,et al.  Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes , 2001, Nature Medicine.

[102]  M. Birnbaum,et al.  Akt1/PKBα Is Required for Normal Growth but Dispensable for Maintenance of Glucose Homeostasis in Mice* , 2001, The Journal of Biological Chemistry.

[103]  D. Kass,et al.  The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[104]  I. Roninson,et al.  Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. , 2001, Genes & development.

[105]  J. Molkentin,et al.  The Transcription Factors GATA4 and GATA6 Regulate Cardiomyocyte Hypertrophy in Vitro and in Vivo * , 2001, The Journal of Biological Chemistry.

[106]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[107]  S. Kudoh,et al.  Calcineurin Plays a Critical Role in the Development of Pressure Overload–Induced Cardiac Hypertrophy , 2001, Circulation.

[108]  K. Kaestner,et al.  Insulin Resistance and a Diabetes Mellitus-Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBβ) , 2001 .

[109]  E. Olson,et al.  Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy , 2001, The EMBO journal.

[110]  K. Khrapko,et al.  Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. , 2001, American journal of physiology. Heart and circulatory physiology.

[111]  A. Ullrich,et al.  Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission , 2001, Oncogene.

[112]  Rick B. Vega,et al.  Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[113]  R. Hajjar,et al.  Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[114]  G. Dorn,et al.  Cytoplasmic signaling pathways that regulate cardiac hypertrophy. , 2001, Annual review of physiology.

[115]  E. Olson,et al.  Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[116]  J. Molkentin The Zinc Finger-containing Transcription Factors GATA-4, -5, and -6 , 2000, The Journal of Biological Chemistry.

[117]  R. Kitsis,et al.  The MEK1–ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice , 2000, The EMBO journal.

[118]  P. Kang,et al.  The conserved phosphoinositide 3‐kinase pathway determines heart size in mice , 2000, The EMBO journal.

[119]  R. Passier,et al.  CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. , 2000, The Journal of clinical investigation.

[120]  Paul A. Overbeek,et al.  TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice , 2000, Nature Medicine.

[121]  E. Olson,et al.  Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[122]  W. Kannel,et al.  Vital epidemiologic clues in heart failure. , 2000, Journal of clinical epidemiology.

[123]  J. Molkentin,et al.  Regulation of MEF2 by p38 MAPK and its implication in cardiomyocyte biology. , 2000, Trends in cardiovascular medicine.

[124]  M. Malek Health economics of heart failure , 1999, Heart.

[125]  E. Hafen,et al.  Drosophila S6 kinase: a regulator of cell size. , 1999, Science.

[126]  Michael Karin,et al.  The Beginning of the End: IκB Kinase (IKK) and NF-κB Activation* , 1999, The Journal of Biological Chemistry.

[127]  E. Miska,et al.  MEF‐2 function is modified by a novel co‐repressor, MITR , 1999, The EMBO journal.

[128]  E. Miska,et al.  HDAC4 deacetylase associates with and represses the MEF2 transcription factor , 1999, The EMBO journal.

[129]  Anthony J. Muslin,et al.  RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. , 1999, The Journal of clinical investigation.

[130]  A. Clerk,et al.  Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists. , 1999, The American journal of cardiology.

[131]  G L Johnson,et al.  Organization and regulation of mitogen-activated protein kinase signaling pathways. , 1999, Current opinion in cell biology.

[132]  F. Zannad,et al.  Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure: the EPICAL Study. Epidémiologie de l'Insuffisance Cardiaque Avancée en Lorraine. , 1999, Journal of the American College of Cardiology.

[133]  J. Croft,et al.  Hospitalization of patients with heart failure: National Hospital Discharge Survey, 1985 to 1995. , 1999, American heart journal.

[134]  Stefano Fumagalli,et al.  Disruption of the p70s6k/p85s6k gene reveals a small mouse phenotype and a new functional S6 kinase , 1998, The EMBO journal.

[135]  E. Neer,et al.  Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[136]  D. Levy,et al.  Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. , 1998, Journal of the American College of Cardiology.

[137]  A. Clerk,et al.  "Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. , 1998, Circulation research.

[138]  John W. Adams,et al.  Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[139]  R. Lefkowitz,et al.  Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. , 1998, Science.

[140]  Jeffrey Robbins,et al.  A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy , 1998, Cell.

[141]  G. Dorn,et al.  Transgenic Gαq overexpression induces cardiac contractile failure in mice , 1997 .

[142]  Minoru Hongo,et al.  MLP-Deficient Mice Exhibit a Disruption of Cardiac Cytoarchitectural Organization, Dilated Cardiomyopathy, and Heart Failure , 1997, Cell.

[143]  K. Chien,et al.  Ventricular Expression of a MLC-2v-ras Fusion Gene Induces Cardiac Hypertrophy and Selective Diastolic Dysfunction in Transgenic Mice (*) , 1995, The Journal of Biological Chemistry.