Optimal Recombination in Genetic Algorithms

This paper surveys results on complexity of the optimal recombination problem (ORP), which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results.

[1]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[2]  Claude Berge,et al.  The theory of graphs and its applications , 1962 .

[3]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  E. Reingold,et al.  Combinatorial Algorithms: Theory and Practice , 1977 .

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[8]  Jayme Luiz Szwarcfiter,et al.  Hamilton Paths in Grid Graphs , 1982, SIAM J. Comput..

[9]  J. Krarup,et al.  The simple plant location problem: Survey and synthesis , 1983 .

[10]  Egon Balas,et al.  Finding large cliques in arbitrary graphs by bipartite matching , 1993, Cliques, Coloring, and Satisfiability.

[11]  Yuval Rabani,et al.  A computational view of population genetics , 1995, STOC '95.

[12]  Mutsunori Yagiura,et al.  The use of dynamic programming in genetic algorithms for permutation problems , 1996 .

[13]  C. Reeves Graph Partitioning Using Genetic Algorithms , 1996 .

[14]  D. Hochbaum Approximating covering and packing problems: set cover, vertex cover, independent set, and related problems , 1996 .

[15]  Colin R. Reeves,et al.  Genetic Algorithms for the Operations Researcher , 1997, INFORMS J. Comput..

[16]  Charu C. Aggarwal,et al.  Optimized Crossover for the Independent Set Problem , 1997, Oper. Res..

[17]  A. Sinclair,et al.  A computational view of population genetics , 1998 .

[18]  Egon Balas,et al.  Optimized Crossover-Based Genetic Algorithms for the Maximum Cardinality and Maximum Weight Clique Problems , 1998, J. Heuristics.

[19]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[20]  A. Eremeev A Genetic Algorithm with a Non-Binary Representation for the Set Covering Problem , 1999 .

[21]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[22]  Ashish Tiwari,et al.  A greedy genetic algorithm for the quadratic assignment problem , 2000, Comput. Oper. Res..

[23]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[24]  Helena R. Lourenço,et al.  Multiobjective Metaheuristics for the Bus Driver Scheduling Problem , 2001, Transp. Sci..

[25]  Gerhard J. Woeginger,et al.  Approximation schemes-a tutorial , 2001 .

[26]  Colin R. Reeves,et al.  Genetic Algorithms—Principles and Perspectives , 2002, Operations Research/Computer Science Interfaces Series.

[27]  Hans-Paul Schwefel,et al.  How to analyse evolutionary algorithms , 2002, Theor. Comput. Sci..

[28]  Thomas Jansen,et al.  The Analysis of Evolutionary Algorithms—A Proof That Crossover Really Can Help , 2002, Algorithmica.

[29]  Paul D. Seymour,et al.  Tour Merging via Branch-Decomposition , 2003, INFORMS J. Comput..

[30]  Carlos Cotta,et al.  A study on allelic recombination , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[31]  Carlos Cotta,et al.  Embedding Branch and Bound within Evolutionary Algorithms , 2003, Applied Intelligence.

[32]  Nicholas J. Radcliffe,et al.  The algebra of genetic algorithms , 1994, Annals of Mathematics and Artificial Intelligence.

[33]  E. Mukhacheva,et al.  L. V. Kantorovich and Cutting-Packing Problems: New Approaches to Combinatorial Problems of Linear Cutting and Rectangular Packing , 2006 .

[34]  The Traveling Salesman Problem for Cubic Graphs , 2007 .

[35]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[36]  Yury Kochetov,et al.  Complexity of local search for the p-median problem , 2008, Eur. J. Oper. Res..

[37]  Anton V. Eremeev,et al.  On Complexity of Optimal Recombination for Binary Representations of Solutions , 2008, Evolutionary Computation.

[38]  Erdal Erel,et al.  Customer order scheduling problem: a comparative metaheuristics study , 2008 .

[39]  Benjamin Doerr,et al.  Crossover can provably be useful in evolutionary computation , 2008, GECCO '08.

[40]  Anton V. Eremeev,et al.  Genetic algorithms for a supply management problem: MIP-recombination vs greedy decoder , 2009, Eur. J. Oper. Res..

[41]  Anton V. Eremeev,et al.  MIP-based GRASP and Genetic Algorithm for Balancing Transfer Lines , 2010, Matheuristics.

[42]  Anton V. Eremeev,et al.  On Complexity of the Optimal Recombination for the Travelling Salesman Problem , 2011, EvoCOP.

[43]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.