The Power of the Hexagon

The hexagon of opposition is an improvement of the square of opposition due to Robert Blanché. After a short presentation of the square and its various interpretations, we discuss two important problems related with the square: the problem of the I-corner and the problem of the O-corner. The meaning of the notion described by the I-corner does not correspond to the name used for it. In the case of the O-corner, the problem is not a wrong-name problem but a no-name problem and it is not clear what is the intuitive notion corresponding to it. We explain then that the triangle of contrariety proposed by different people such as Vasiliev and Jespersen solves these problems, but that we don’t need to reject the square. It can be reconstructed from this triangle of contrariety, by considering a dual triangle of subcontrariety. This is the main idea of Blanché’s hexagon. We then give different examples of hexagons to show how this framework can be useful to conceptual analysis in many different fields such as economy, music, semiotics, identity theory, philosophy, metalogic and the metatheory of the hexagon itself. We finish by discussing the abstract structure of the hexagon and by showing how we can swing from sense to non-sense thinking with the hexagon.

[1]  Alfred Tarski Drei Briefe an Otto Neurath , 1992 .

[2]  O. Jespersen Negation in English and other languages , 1917 .

[3]  Hans Smessaert,et al.  Jean-Yves Béziau and Gillman Payette (eds.), The Square of Opposition: A General Framework for Cognition. Bern, Peter Lang, 2012. Jean-Yves Béziau and Dale Jacquette (eds.), Around and Beyond the Square of Opposition. Basel, Birkhäuser (Springer), 2012 (joint review) , 2013 .

[4]  Béziau Jean-Yves New light on the Square of oppositions and its nameless corner , 2003 .

[5]  Russell Grigg,et al.  Lacan and Badiou: Logic of the Pas-Tout , 2005 .

[6]  Aimable-André Dufatanye From the Logical Square to Blanché’s Hexagon: Formalization, Applicability and the Idea of the Normative Structure of Thought , 2012, Logica Universalis.

[7]  Didier Dubois,et al.  From Blanché’s Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory , 2012, Logica Universalis.

[8]  Ivor Grattan-Guinness,et al.  Omnipresence, Multipresence and Ubiquity: Kinds of Generality in and Around Mathematics and Logics , 2011, Logica Universalis.

[9]  René Guitart,et al.  A Hexagonal Framework of the Field $${\mathbb{F}_4}$$ and the Associated Borromean Logic , 2012, Logica Universalis.

[10]  Robert Blanche Sur l'opposition des concepts , 2008 .

[11]  Alessio Moretti,et al.  Why the Logical Hexagon? , 2012, Logica Universalis.

[12]  Jean Sallantin,et al.  Logical Extensions of Aristotle’s Square , 2008, Logica Universalis.

[13]  Terence Parsons,et al.  Things That are Right with the Traditional Square of Opposition , 2008, Logica Universalis.

[14]  Claude Lévi-Strauss,et al.  Les Structures Élémentaires de la Parenté , 1949 .

[15]  Hans Smessaert,et al.  The Classical Aristotelian Hexagon Versus the Modern Duality Hexagon , 2012, Logica Universalis.

[16]  Laurence R. Horn A Natural History of Negation , 1989 .

[17]  Régis Pellissier,et al.  “Setting” n-Opposition , 2008, Logica Universalis.

[18]  Pierre Cartier How to Take Advantage of the Blur Between the Finite and the Infinite , 2012, Logica Universalis.

[19]  Mary Tiles,et al.  Could the Aristotelian square of opposition be translated into Chinese? , 2004 .

[20]  Alessio Moretti,et al.  Geometry of Modalities ? Yes : Through n-Opposition Theory , 2004 .

[21]  Jean-Blaise Grize Des carrés qui ne tournent pas rond et de quelques autres , 1988 .

[22]  Nathaniel B. Smith The Idea of the French Hexagon , 1969 .

[23]  Ivo Thomas,et al.  Apuleian logic : the nature, sources, and influence of Apuleius's Peri hermeneias , 1969 .

[24]  Peter Simons Approaching the Alethic Modal Hexagon of Opposition , 2012, Logica Universalis.

[25]  Jan Łukasiewicz,et al.  A System of Modal Logic , 1953 .

[26]  A. Moretti,et al.  The geometry of logical opposition , 2009 .

[27]  M. Wajsberg,et al.  Ein erweiterter Klassenkalkül , 1933 .

[28]  D. Jacquette,et al.  Around and Beyond the Square of Opposition , 2012 .

[29]  John van Heijenoort Review: Robert Blanche, Sur la Structuration du Tableau des Connectifs Interpropositionnels Binaries , 1959 .

[30]  Jan C. Joerden,et al.  Deontological Square, Hexagon, and Decagon: A Deontic Framework for Supererogation , 2012, Logica Universalis.

[31]  Mariano Sigman,et al.  Global organization of the Wordnet lexicon , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Jacob Hoeksema JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday , 1999 .

[33]  Jacob Hoeksema,et al.  Blocking effects and polarity sensitivity , 1999 .

[34]  Jean-Yves Béziau,et al.  The Square of Opposition: A General Framework for Cognition , 2011 .

[35]  M. Breal Essai de sémantique : (science des significations) , 1924 .

[36]  Dany Jaspers,et al.  Logic and Colour , 2012, Logica Universalis.

[37]  Robert Blanche Sur La Structuration du Tableau Des Connectifs Interpropositionnels Binaires , 1957, J. Symb. Log..

[38]  Sémir Badir,et al.  How The Semiotic Square Came , 2012 .

[39]  G. Granger,et al.  Pensée formelle et sciences de l'homme , 1960 .

[40]  A. Weil,et al.  Souvenirs d'apprentissage , 1991 .

[41]  J. Y. Beziau,et al.  Special issue on the square of opposition , 2008 .

[42]  Robert Blanché,et al.  QUANTITY, MODALITY, AND OTHER KINDRED SYSTEMS OF CATEGORIES , 1952 .