Dodeka(ethylene)octamine.

Because of their great potential in organic synthesis, design of proton sponges and superbases remains an active area of research. Nitrogen bases are very popular for this purpose, and the most common design principles involve destabilization of the base by enforcing close proximity of nitrogen lone pairs through rigid scaffolds and stabilization of the conjugate acid by intramolecular hydrogen bonds and extended, polarizable π-systems. The classic proton sponge, 1,8-bis(dimethylamino)naphthalene (1), 3 ] is the paradigmatic prototype that has spawned many variations.

[1]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[2]  S. Bachrach,et al.  Using the pyridine and quinuclidine scaffolds for superbases: a DFT study. , 2010, The Journal of organic chemistry.

[3]  Z. Maksić,et al.  Superbasicity of a bis-guanidino compound with a flexible linker: a theoretical and experimental study. , 2009, Journal of the American Chemical Society.

[4]  M. Meisel,et al.  Synthese und strukturchemische Untersuchungen an molekularen Oxovanadiumphosphonaten , 2008 .

[5]  W. Thiel,et al.  Intra-annular cyclophane diamines as proton sponges: a computational study , 2007 .

[6]  Z. Maksić,et al.  Derivatives of azacalix[3](2,6)pyridine are strong neutral organic superbases: a DFT study. , 2007, Organic letters.

[7]  Ernesto Estrada,et al.  Rational design and first principles studies toward the discovery of a small and versatile proton sponge. , 2006, Angewandte Chemie.

[8]  Z. Maksić,et al.  1,8-Bis(hexamethyltriaminophosphazenyl)naphthalene, HMPN: a superbasic bisphosphazene "proton sponge". , 2005, Journal of the American Chemical Society.

[9]  Z. Maksić,et al.  The proton affinity of the superbase 1,8-bis(tetramethylguanidino)naphthalene (TMGN) and some related compounds: a theoretical study. , 2002, Chemistry.

[10]  K. Seppelt,et al.  The structures of and , 2000 .

[11]  Y. Miyahara,et al.  Das Proton-Cryptat von Hexaethylentetramin , 1999 .

[12]  Y. Miyahara,et al.  The Proton Cryptate of Hexaethylenetetramine. , 1999, Angewandte Chemie.

[13]  E. P. Hunter,et al.  Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update , 1998 .

[14]  Arieh Warshel,et al.  Langevin Dipoles Model for ab Initio Calculations of Chemical Processes in Solution: Parametrization and Application to Hydration Free Energies of Neutral and Ionic Solutes and Conformational Analysis in Aqueous Solution , 1997 .

[15]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[16]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[17]  K. Peters,et al.  Novel, Very Strongly Basic, Pentacyclic “Proton Sponges” with Vinamidine Structure , 1987 .

[18]  H. Schnering,et al.  Neuartige, sehr stark basische, pentacyclische „Protonenschwämme”︁ mit Vinamidinstruktur , 1987 .

[19]  E. Pedersen,et al.  The Crystal Structure of 7,10,19,22-Tetraoxa-1,4,13,16-Tetraazatricyclo[14.8.2.2(4,13)]-octacosane at -150 degrees C. , 1986 .

[20]  Arieh Ben-Naim,et al.  Solvation thermodynamics of nonionic solutes , 1984 .

[21]  P. Kebarle,et al.  Gas-phase basicities of N-methyl substituted 1,8-diaminonaphthalenes and related compounds , 1978 .

[22]  C. Rickard,et al.  Cubic co-ordination: crystal structure of sodium octafluoroprotactinate(V) , 1969 .