Tuning Syntactically Enhanced Word Alignment for Statistical Machine Translation

We introduce a syntactically enhanced word alignment model that is more flexible than state-of-the-art generative word alignment models and can be tuned according to different end tasks. First of all, this model takes the advantages of both unsupervised and supervised word alignment approaches by obtaining anchor alignments from unsupervised generative models and seeding the anchor alignments into a supervised discriminative model. Second, this model offers the flexibility of tuning the alignment according to different optimisation criteria. Our experiments show that using our word alignment in a Phrase-Based Statistical Machine Translation system yields a 5.38% relative increase on IWSLT 2007 task in terms of BLEU score.

[1]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[2]  Hermann Ney,et al.  HMM-Based Word Alignment in Statistical Translation , 1996, COLING.

[3]  Alexander M. Fraser,et al.  Squibs and Discussions: Measuring Word Alignment Quality for Statistical Machine Translation , 2007, CL.

[4]  I. Dan Melamed,et al.  Models of translation equivalence among words , 2000, CL.

[5]  Yang Liu,et al.  Log-Linear Models for Word Alignment , 2005, ACL.

[6]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[7]  Ted Dunning,et al.  Accurate Methods for the Statistics of Surprise and Coincidence , 1993, CL.

[8]  Joakim Nivre,et al.  MaltParser: A Language-Independent System for Data-Driven Dependency Parsing , 2007, Natural Language Engineering.

[9]  Ben Taskar,et al.  Alignment by Agreement , 2006, NAACL.

[10]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[11]  Russell V. Lenth,et al.  Computer Intensive Methods for Testing Hypotheses: An Introduction , 1990 .

[12]  Adwait Ratnaparkhi,et al.  A Maximum Entropy Model for Part-Of-Speech Tagging , 1996, EMNLP.

[13]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[14]  Yuji Matsumoto MaltParser: A language-independent system for data-driven dependency parsing , 2005 .

[15]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[16]  Hermann Ney,et al.  AER: do we need to “improve” our alignments? , 2006, IWSLT.

[17]  Philip Resnik,et al.  Evaluating Translational Correspondence using Annotation Projection , 2002, ACL.

[18]  Andreas Stolcke,et al.  SRILM - an extensible language modeling toolkit , 2002, INTERSPEECH.

[19]  Yanjun Ma,et al.  Improving Word Alignment Using Syntactic Dependencies , 2008, SSST@ACL.

[20]  William J. Byrne,et al.  MTTK: An Alignment Toolkit for Statistical Machine Translation , 2006, NAACL.

[21]  Salim Roukos,et al.  A Maximum Entropy Word Aligner for Arabic-English Machine Translation , 2005, HLT.

[22]  Robert C. Moore A Discriminative Framework for Bilingual Word Alignment , 2005, HLT.

[23]  Scott M. Smith,et al.  Computer Intensive Methods for Testing Hypotheses: An Introduction , 1989 .

[24]  Cameron S. Fordyce,et al.  Overview of the IWSLT 2007 evaluation campaign , 2007, IWSLT.

[25]  Rafael E. Banchs,et al.  Discriminative Alignment Training without Annotated Data for Machine Translation , 2007, HLT-NAACL.

[26]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.