Compact waveguide splitter networks.

We demonstrate compact waveguide splitter networks in siliconon- insulator (SOI) rib waveguides using trench-based splitters (TBSs) and bends (TBBs). Rather than a 90 degrees geometry, we use 105 degrees TBSs to facilitate reliable fabrication of high aspect ratio trenches suitable for 50/50 splitting when filled with SU8. Three dimensional (3D) finite difference time domain (FDTD) simulation is used for splitter and bend design. Measured TBB and TBS optical efficiencies are 84% and 68%, respectively. Compact 105 degrees 1 x 4, 1 x 8, and 1 x 32 trench-based splitter networks (TBSNs) are demonstrated. The measured total optical loss of the 1 x 32 TBSN is 9.15 dB. Its size is only 700 microm x 1600 microm for an output waveguide spacing of 50 microm.

[1]  B. Dudley,et al.  Experimental demonstration of replicated multimode interferometer power splitter in Zr-doped sol-gel , 2006, Journal of Lightwave Technology.

[2]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[3]  G. Nordin,et al.  Compact and low loss silicon-on-insulator rib waveguide 90° bend , 2006 .

[4]  Ivo Rendina,et al.  Advances in silicon-on-insulator optoelectronics , 1998 .

[5]  Gregory P. Nordin,et al.  Compact 90° trench-based splitter for silicon-on-insulator rib waveguides , 2007 .

[6]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[7]  T. Hashimoto,et al.  Low-Loss Y-Branch Waveguides Designed by Wavefront Matching Method , 2009, Journal of Lightwave Technology.

[8]  Martin Hegner,et al.  Label free analysis of transcription factors using microcantilever arrays. , 2006, Biosensors & bioelectronics.

[9]  M. Bouda,et al.  Compact 1*16 power splitter based on symmetrical 1*2 MMI splitters , 1994 .

[10]  G. Nordin,et al.  Air-trench splitters for ultra-compact ring resonators in low refractive index contrast waveguides. , 2008, Optics express.

[11]  J. Eijkel,et al.  A microfluidic device with an integrated waveguide beam splitter for velocity measurements of flowing particles by Fourier transformation. , 2003, Analytical chemistry.

[12]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[13]  Fumiaki Hanawa,et al.  High reliability optical splitters composed of silica-based planar lightwave circuits , 1995 .

[14]  Gregory P. Nordin,et al.  In-plane photonic transduction for microcantilever sensor arrays , 2007, SPIE BiOS.

[15]  A. Glidle,et al.  An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters , 2005, IEEE Sensors Journal.