CRISPR-Cas9 nuclear dynamics and target recognition in living cells

How CRISPR Cas9–guide RNA complexes navigate the nucleus and interrogate the genome is not well understood. Ma et al. track these complexes in live cells and find that mutations in the guide seed region significantly reduced the complex’s target residence time, with a commensurate impairment of cleavage.

[1]  J. Bähler Faculty Opinions recommendation of Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. , 2012 .

[2]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[3]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[4]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[5]  Grigory S. Filonov,et al.  Broccoli: Rapid Selection of an RNA Mimic of Green Fluorescent Protein by Fluorescence-Based Selection and Directed Evolution , 2014, Journal of the American Chemical Society.

[6]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[7]  Jennifer A. Doudna,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[8]  J. Joung,et al.  High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets , 2015, Nature.

[9]  L. Banaszynski,et al.  A Rapid, Reversible, and Tunable Method to Regulate Protein Function in Living Cells Using Synthetic Small Molecules , 2006, Cell.

[10]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[11]  A. Fire,et al.  Distinct patterns of Cas9 mismatch tolerance in vitro and in vivo , 2016, Nucleic acids research.

[12]  Konstantin Severinov,et al.  Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3′-terminal segment of guide RNA , 2016, Nucleic acids research.

[13]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[14]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[15]  M. Rutkauskas,et al.  Directional R-Loop Formation by the CRISPR-Cas Surveillance Complex Cascade Provides Efficient Off-Target Site Rejection. , 2015, Cell reports.

[16]  Jennifer A. Doudna,et al.  A Cas9–guide RNA complex preorganized for target DNA recognition , 2015, Science.

[17]  Luke A. Gilbert,et al.  CRISPR interference (CRISPRi) for sequence-specific control of gene expression , 2013, Nature Protocols.

[18]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[19]  R. Tjian,et al.  Dynamics of CRISPR-Cas9 genome interrogation in living cells , 2015, Science.

[20]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[21]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[22]  Nicholas E. Propson,et al.  Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis , 2013, Proceedings of the National Academy of Sciences.

[23]  Tautvydas Karvelis,et al.  Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes , 2014, Proceedings of the National Academy of Sciences.

[24]  R. Singer,et al.  In Vivo Imaging of Labelled Endogenous β-actin mRNA During Nucleocytoplasmic Transport , 2010, Nature.

[25]  Shaojie Zhang,et al.  Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow , 2016, Nature Biotechnology.

[26]  David A. Scott,et al.  Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells , 2014, Nature Biotechnology.

[27]  P. Stadler,et al.  An updated human snoRNAome , 2016, Nucleic acids research.

[28]  Jacob E Corn,et al.  Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA , 2016, Nature Biotechnology.

[29]  Jennifer A. Doudna,et al.  Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage , 2016, Science.

[30]  J. Keith Joung,et al.  731. High-Fidelity CRISPR-Cas9 Nucleases with No Detectable Genome-Wide Off-Target Effects , 2016 .

[31]  Wei Zhang,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.

[32]  Howard M. Salis,et al.  A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation , 2016, PLoS Comput. Biol..

[33]  Jennifer A. Doudna,et al.  Conformational control of DNA target cleavage by CRISPR–Cas9 , 2015, Nature.

[34]  Shaojie Zhang,et al.  Multicolor CRISPR labeling of chromosomal loci in human cells , 2015, Proceedings of the National Academy of Sciences.

[35]  David A. Scott,et al.  Rationally engineered Cas9 nucleases with improved specificity , 2015, Science.

[36]  James G McNally,et al.  Quantitative FRAP in analysis of molecular binding dynamics in vivo. , 2008, Methods in cell biology.

[37]  Mazhar Adli,et al.  Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease , 2014, Nature Biotechnology.

[38]  G. Church,et al.  Cas9 gRNA engineering for genome editing, activation and repression , 2015, Nature Methods.

[39]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.