Cathepsin S Regulates Antigen Processing and T Cell Activity in Non-Hodgkin Lymphoma.

[1]  E. Gilboa,et al.  Tumor-targeted silencing of the peptide transporter TAP induces potent antitumor immunity , 2019, Nature Communications.

[2]  A. Efeyan,et al.  Oncogenic Rag GTPase signalling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR , 2019, Nature Metabolism.

[3]  O. Lingjaerde,et al.  Convergence of risk prediction models in follicular lymphoma , 2019, Haematologica.

[4]  Kyle M. Douglass,et al.  EZH2 oncogenic mutations drive epigenetic, transcriptional, and structural changes within chromatin domains , 2019, Nature Genetics.

[5]  B. Nadel,et al.  Human germinal center transcriptional programs are de-synchronized in B cell lymphoma , 2018, Nature Immunology.

[6]  Eiryo Kawakami,et al.  T Follicular Helper Cell‐Germinal Center B Cell Interaction Strength Regulates Entry into Plasma Cell or Recycling Germinal Center Cell Fate , 2018, Immunity.

[7]  S. Woo,et al.  Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-induced apoptosis through upregulation of Bim expression. , 2018, Biochemical and Biophysical Research Communications - BBRC.

[8]  Roland Schmitz,et al.  Genetics and Pathogenesis of Diffuse Large B‐Cell Lymphoma , 2018, The New England journal of medicine.

[9]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[10]  M. Calaminici,et al.  Genomic profiling reveals spatial intra-tumor heterogeneity in follicular lymphoma , 2018, Leukemia.

[11]  D. Dunson,et al.  Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma , 2017, Cell.

[12]  David Gfeller,et al.  Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity , 2017, bioRxiv.

[13]  Ali Bashashati,et al.  Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study , 2016, PLoS medicine.

[14]  W. Chan,et al.  Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells , 2016, Cell.

[15]  J. Gribben,et al.  TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses. , 2016, Blood.

[16]  Steven J. M. Jones,et al.  Genome-Wide Profiles of Extra-cranial Malignant Rhabdoid Tumors Reveal Heterogeneity and Dysregulated Developmental Pathways. , 2016, Cancer cell.

[17]  Olivier Michielin,et al.  Attracting cavities for docking. Replacing the rough energy landscape of the protein by a smooth attracting landscape , 2015, J. Comput. Chem..

[18]  J. Joyce,et al.  Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response , 2015, Nature Reviews Cancer.

[19]  R. Gascoyne,et al.  Cell of origin of transformed follicular lymphoma. , 2015, Blood.

[20]  O. Elemento,et al.  The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development , 2015, Nature Medicine.

[21]  K. Gevaert,et al.  Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S , 2015, Proteomics.

[22]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[23]  J. Gribben,et al.  TNFRSF14 aberrations in Follicular Lymphoma B Cells Result in Increased Alloresponses in Vitro and in Vivo , 2014 .

[24]  S. Crotty T follicular helper cell differentiation, function, and roles in disease. , 2014, Immunity.

[25]  R. Emerson,et al.  PD-1 blockade induces responses by inhibiting adaptive immune resistance , 2014, Nature.

[26]  Bruce W. Shaw,et al.  Discovery of Cathepsin S Inhibitor LY3000328 for the Treatment of Abdominal Aortic Aneurysm. , 2014, ACS medicinal chemistry letters.

[27]  W. Hahn,et al.  Analysis of tumor- and stroma-supplied proteolytic networks reveals a brain metastasis-promoting role for cathepsin S , 2014, Nature Cell Biology.

[28]  R. Gascoyne,et al.  The tumour microenvironment in B cell lymphomas , 2014, Nature Reviews Cancer.

[29]  Chris Sander,et al.  Frequent disruption of the RB pathway in indolent follicular lymphoma suggests a new combination therapy , 2014, The Journal of experimental medicine.

[30]  Raul Rabadan,et al.  Genetics of follicular lymphoma transformation. , 2014, Cell reports.

[31]  M. Calaminici,et al.  Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma , 2013, Nature Genetics.

[32]  R. Davis,et al.  Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. , 2014, The Lancet. Oncology.

[33]  Ash A. Alizadeh,et al.  Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. , 2012, Blood.

[34]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[35]  C. Sander,et al.  Mutual exclusivity analysis identifies oncogenic network modules. , 2012, Genome research.

[36]  Olga Vasiljeva,et al.  Cysteine cathepsins: From structure, function and regulation to new frontiers , 2011, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics.

[37]  Govind Bhagat,et al.  Combined genetic inactivation of β2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. , 2011, Cancer cell.

[38]  Konstantinos J. Mavrakis,et al.  The Eph-Receptor A7 Is a Soluble Tumor Suppressor for Follicular Lymphoma , 2011, Cell.

[39]  Steven J. M. Jones,et al.  Frequent mutation of histone modifying genes in non-Hodgkin lymphoma , 2011, Nature.

[40]  Raul Rabadan,et al.  Analysis of the Coding Genome of Diffuse Large B-Cell Lymphoma , 2011, Nature Genetics.

[41]  Jan H. Jensen,et al.  Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. , 2011, Journal of chemical theory and computation.

[42]  Roland L. Dunbrack,et al.  A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. , 2011, Structure.

[43]  R. Gascoyne,et al.  Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. , 2010, Cancer research.

[44]  T. Reinheckel,et al.  Specialized roles for cysteine cathepsins in health and disease. , 2010, The Journal of clinical investigation.

[45]  Gerhard Klebe,et al.  PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations , 2007, Nucleic Acids Res..

[46]  M. Mann,et al.  Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips , 2007, Nature Protocols.

[47]  D. Hanahan,et al.  Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. , 2006, Genes & development.

[48]  Jan H. Jensen,et al.  Very fast empirical prediction and rationalization of protein pKa values , 2005, Proteins.

[49]  O. Vasiljeva,et al.  Recombinant human procathepsin S is capable of autocatalytic processing at neutral pH in the presence of glycosaminoglycans , 2005, FEBS letters.

[50]  L. Staudt,et al.  Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. , 2004, The New England journal of medicine.

[51]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[52]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[53]  A. W. Harris,et al.  VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. , 2004, Blood.

[54]  Traian Sulea,et al.  Specificity determinants of human cathepsin s revealed by crystal structures of complexes. , 2003, Biochemistry.

[55]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  G. Dranoff,et al.  Cathepsin S required for normal MHC class II peptide loading and germinal center development. , 1999, Immunity.

[57]  R. Mitchell,et al.  Cathepsin S activity regulates antigen presentation and immunity. , 1998, The Journal of clinical investigation.

[58]  C. Peters,et al.  Degradation of Mouse Invariant Chain: Roles of Cathepsins S and D and the Influence of Major Histocompatibility Complex Polymorphism , 1997, The Journal of experimental medicine.

[59]  H. Ploegh,et al.  Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. , 1996, Immunity.

[60]  B Honig,et al.  Calculation of electrostatic effects at the amino terminus of an alpha helix. , 1994, Biophysical journal.