Many-valued hybrid logic
暂无分享,去创建一个
[1] M. Fitting. Proof Methods for Modal and Intuitionistic Logics , 1983 .
[2] Patrick Blackburn,et al. Terminating Tableau Calculi for Hybrid Logics Extending K , 2009, M4M.
[3] L. Godo,et al. Logical approaches to fuzzy similarity-based reasoning: an overview , 2008 .
[4] Torben Braüner,et al. Tableau-based Decision Procedures for Hybrid Logic , 2006, J. Log. Comput..
[5] Melvin Fitting. How True It Is = Who Says It’s True , 2009, Stud Logica.
[6] Patrick Blackburn,et al. Termination for Hybrid Tableaus , 2007, J. Log. Comput..
[7] Yakoub Salhi,et al. A family of Gödel hybrid logics , 2010, J. Appl. Log..
[8] W. B. Ewald,et al. Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.
[9] Valeria C V de Paiva,et al. Intuitionistic Hybrid Logic , 2006 .
[10] R. C.,et al. A Hybrid Intuitionistic Logic : Semantics and Decidability , 2005 .
[11] Maarten Marx,et al. Tableaux for Quantified Hybrid Logic , 2002, TABLEAUX.
[12] Melvin Fitting,et al. Many-valued modal logics II , 1992 .
[13] Jens Ulrik Hansen. A Tableau system for a first-order hybrid logic , 2007 .
[14] Melvin Fitting,et al. Tableaus for many-valued modal logic , 1995, Stud Logica.
[15] Melvin Fitting,et al. Modal proof theory , 2007, Handbook of Modal Logic.
[16] A. Troelstra,et al. Constructivism in Mathematics: An Introduction , 1988 .
[17] T. Braüner. Hybrid Logic and its Proof-Theory , 2010 .
[18] Melvin Fitting,et al. Many-valued modal logics , 1991, Fundam. Informaticae.
[19] Patrick Blackburn,et al. Internalizing labelled deduction , 2000, J. Log. Comput..
[20] Torben Braüner,et al. Why does the proof-theory of hybrid logic work so well? , 2007, J. Appl. Non Class. Logics.