Image Sequence Analysis via Partial Differential Equations

This article deals with the problem of restoring and motion segmenting noisy image sequences with a static background. Usually, motion segmentation and image restoration are considered separately in image sequence restoration. Moreover, motion segmentation is often noise sensitive. In this article, the motion segmentation and the image restoration parts are performed in a coupled way, allowing the motion segmentation part to positively influence the restoration part and vice-versa. This is the key of our approach that allows to deal simultaneously with the problem of restoration and motion segmentation. To this end, we propose a theoretically justified optimization problem that permits to take into account both requirements. The model is theoretically justified. Existence and unicity are proved in the space of bounded variations. A suitable numerical scheme based on half quadratic minimization is then proposed and its convergence and stability demonstrated. Experimental results obtained on noisy synthetic data and real images will illustrate the capabilities of this original and promising approach.

[1]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[2]  R. DERICHE,et al.  A Mathematical Study of the Regularized Optical Flow Problem in the Space Bv (() , 1997 .

[3]  Deterioration detection for digital film restoration , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Laurent D. Cohen,et al.  Auxiliary variables and two-step iterative algorithms in computer vision problems , 2004, Journal of Mathematical Imaging and Vision.

[6]  H. Fédérer Geometric Measure Theory , 1969 .

[7]  J. Serrin,et al.  Sublinear functions of measures and variational integrals , 1964 .

[8]  Jayant Shah,et al.  A common framework for curve evolution, segmentation and anisotropic diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  N. Meyers,et al.  Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions , 1975 .

[10]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[11]  Anil C. Kokaram,et al.  A System for Reconstruction of Missing Data in Image Sequences Using Sampled 3D AR Models and MRF Motion Priors , 1996, ECCV.

[12]  L. Vese Problemes variationnels et edp pour l'analyse d'images et l'evolution de courbes , 1996 .

[13]  Jean-Michel Morel,et al.  Introduction To The Special Issue On Partial Differential Equations And Geometry-driven Diffusion In Image Processing And Analysis , 1998, IEEE Trans. Image Process..

[14]  Edward J. Delp,et al.  Discontinuity preserving regularization of inverse visual problems , 1994, IEEE Trans. Syst. Man Cybern..

[15]  I. Cohen Nonlinear Variational Method for Optical Flow Computation , 2006 .

[16]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[17]  J. L. Webb OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .

[18]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[19]  G. Cottet,et al.  Image processing through reaction combined with nonlinear diffusion , 1993 .

[20]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[21]  Tony F. Chan,et al.  Spatially and Scale Adaptive Total Variation Based Regularization and Anisotropic Diiusion in Image Processing , 1996 .

[22]  Donald Geman,et al.  A nonlinear filter for film restoration and other problems in image processing , 1992, CVGIP Graph. Model. Image Process..

[23]  Christoph Schnörr,et al.  Unique reconstruction of piecewise-smooth images by minimizing strictly convex nonquadratic functionals , 1994, Journal of Mathematical Imaging and Vision.

[24]  Stanley Osher,et al.  Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.

[25]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Til Aach,et al.  Bayesian algorithms for adaptive change detection in image sequences using Markov random fields , 1995, Signal Process. Image Commun..

[27]  Pierre Kornprobst Contribution a la restauration d'images et a l'analyse de sequences : approches variationnelles et solutions de viscosite , 1998 .

[28]  James A. Sethian,et al.  Image Processing: Flows under Min/Max Curvature and Mean Curvature , 1996, CVGIP Graph. Model. Image Process..

[29]  L. Evans Measure theory and fine properties of functions , 1992 .

[30]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[31]  G. Anzellotti,et al.  The Euler equation for functionals with linear growth , 1985 .

[32]  Guillermo Sapiro,et al.  Contrast Enhancement via Image Evolution Flow , 1997, CVGIP Graph. Model. Image Process..

[33]  Rachid Deriche,et al.  Image coupling, restoration and enhancement via PDE's , 1997, Proceedings of International Conference on Image Processing.

[34]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[35]  R. Deriche,et al.  Les EDP en traitement des images et vision par ordinateur , 1995 .

[36]  W. Ziemer Weakly differentiable functions , 1989 .

[37]  Anil C. Kokaram Reconstruction of Severely Degraded Image Sequences , 1997, ICIAP.

[38]  Luigi Ambrosio,et al.  A general chain rule for distributional derivatives , 1990 .

[39]  Niklas Nordström,et al.  Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection , 1990, Image Vis. Comput..

[40]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[41]  Rachid Deriche,et al.  Nonlinear operators in image restoration , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Rachid Deriche,et al.  A Variational Method and its Mathematical Study in Image Sequence Analysis , 1998 .

[43]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[44]  Robin D. Morris,et al.  Image Sequence Restoration Using Gibbs Distributions , 1995 .

[45]  Rachid Deriche,et al.  Image restoration via , 1996 .

[46]  Wenyuan Xu,et al.  Analysis and design of anisotropic diffusion for image processing , 1994, Proceedings of 1st International Conference on Image Processing.

[47]  Jill Macdonald Boyce,et al.  Noise reduction of image sequences using adaptive motion compensated frame averaging , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[48]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[49]  Rachid Deriche,et al.  Image restoration via PDE , 1997, Defense + Security.

[50]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[51]  A. I. Vol'pert THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .

[52]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[53]  Ramesh C. Jain,et al.  Motion detection in spatio-temporal space , 1989, Comput. Vis. Graph. Image Process..

[54]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .

[55]  Irene Fonseca,et al.  A Global Method for Relaxation , 1998 .

[56]  Lionel Moisan Traitement numérique d'images et de films : équations aux dérivées partielles préservant forme et relief , 1997 .

[57]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[58]  Rachid Deriche,et al.  Detecting multiple moving targets using deformable contours , 1997, Proceedings of International Conference on Image Processing.

[59]  Guillermo Sapiro,et al.  Experiments on geometric image enhancement , 1994, Proceedings of 1st International Conference on Image Processing.

[60]  L. Álvarez,et al.  Signal and image restoration using shock filters and anisotropic diffusion , 1994 .

[61]  Eric Dubois,et al.  Noise Reduction in Image Sequences Using Motion-Compensated Temporal Filtering , 1984, IEEE Trans. Commun..

[62]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[63]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[64]  Luc Van Gool,et al.  Coupled Geometry-Driven Diffusion Equations for Low-Level Vision , 1994, Geometry-Driven Diffusion in Computer Vision.

[65]  F. Guichard Axiomatisation des analyses multi-échelles d'images et de films , 1994 .

[66]  R. Deriche,et al.  EDP, débruitage et réhaussement en traitement d'image : Analyse et contributions , 1997 .

[67]  Rachid Deriche,et al.  A PDE-based level-set approach for detection and tracking of moving objects , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[68]  J. Morel,et al.  Segmentation of images by variational methods: a constructive approach. , 1988 .