Enzymatically dissociated muscle fibers display rapid dedifferentiation and impaired mitochondrial calcium control

[1]  S. Srikantan,et al.  SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics , 2022, iScience.

[2]  M. Kustermann,et al.  Muscle-Related Plectinopathies , 2021, Cells.

[3]  Yida Ye,et al.  Mechanotranduction Pathways in the Regulation of Mitochondrial Homeostasis in Cardiomyocytes , 2021, Frontiers in Cell and Developmental Biology.

[4]  A. Månsson,et al.  Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity , 2020, The Journal of biological chemistry.

[5]  R. Foo,et al.  What we know about cardiomyocyte dedifferentiation. , 2020, Journal of molecular and cellular cardiology.

[6]  Yongchang Yao,et al.  Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine , 2020, npj Regenerative Medicine.

[7]  E. Murphy,et al.  Role of Mitochondrial Calcium and the Permeability Transition Pore in Regulating Cell Death. , 2020, Circulation research.

[8]  J. Jaiswal,et al.  Dysregulation of Mitochondrial Ca2+ Uptake and Sarcolemma Repair Underlie Muscle Weakness and Wasting in Patients and Mice Lacking MICU1 , 2019, Cell reports.

[9]  A. Camara,et al.  Cyclosporin A Increases Mitochondrial Buffering of Calcium: An Additional Mechanism in Delaying Mitochondrial Permeability Transition Pore Opening , 2019, Cells.

[10]  Jing Wang,et al.  WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs , 2019, Nucleic Acids Res..

[11]  B. Glancy,et al.  Subcellular connectomic analyses of energy networks in striated muscle , 2018, Nature Communications.

[12]  D. Bers,et al.  The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. , 2018, JCI insight.

[13]  Sebastian Schürmann,et al.  Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach , 2018, Light: Science & Applications.

[14]  P. Pinton,et al.  The machineries, regulation and cellular functions of mitochondrial calcium , 2018, Nature Reviews Molecular Cell Biology.

[15]  C. Reggiani,et al.  A 3D diffusional-compartmental model of the calcium dynamics in cytosol, sarcoplasmic reticulum and mitochondria of murine skeletal muscle fibers , 2018, PloS one.

[16]  C. Baines,et al.  The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. , 2018, Cell calcium.

[17]  Terence E. Ryan,et al.  Characterization and utilization of the flexor digitorum brevis for assessing skeletal muscle function , 2018, Skeletal Muscle.

[18]  T. Rando,et al.  Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo. , 2017, Cell reports.

[19]  R. Legendre,et al.  In Situ Fixation Redefines Quiescence and Early Activation of Skeletal Muscle Stem Cells. , 2017, Cell reports.

[20]  H. Westerblad,et al.  Mechanical isolation, and measurement of force and myoplasmic free [Ca2+] in fully intact single skeletal muscle fibers , 2017, Nature Protocols.

[21]  B. Suki,et al.  Regulation of Mitochondrial Structure and Dynamics by the Cytoskeleton and Mechanical Factors , 2017, International journal of molecular sciences.

[22]  R. Deev,et al.  Glu20Ter Variant in PLEC 1f Isoform Causes Limb-Girdle Muscle Dystrophy with Lung Injury , 2017, Front. Neurol..

[23]  Li-Hsin Han,et al.  Modeling Physiological Events in 2D vs. 3D Cell Culture. , 2017, Physiology.

[24]  Souren Mkrtchian,et al.  Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation , 2016, Hepatology.

[25]  M. Madesh,et al.  SPG7 is an Essential and Conserved Component of the Mitochondrial Permeability transition Pore , 2016 .

[26]  H. Westerblad,et al.  Cyclophilin D, a target for counteracting skeletal muscle dysfunction in mitochondrial myopathy. , 2015, Human molecular genetics.

[27]  Aleksandra Filipovska,et al.  SLIRP Regulates the Rate of Mitochondrial Protein Synthesis and Protects LRPPRC from Degradation , 2015, PLoS genetics.

[28]  L. Blatter,et al.  Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. , 2015, Cardiovascular research.

[29]  M. Gregory,et al.  Bioengineering and Semisynthesis of an Optimized Cyclophilin Inhibitor for Treatment of Chronic Viral Infection , 2015, Chemistry & Biology.

[30]  L. Lackner Shaping the dynamic mitochondrial network , 2014, BMC Biology.

[31]  P. Pinton,et al.  The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications , 2014, The Journal of physiology.

[32]  Colin A. Johnson,et al.  Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling , 2013, Nature Genetics.

[33]  Robert S. Balaban,et al.  The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter (MCU) , 2013, Nature Cell Biology.

[34]  G. Walko,et al.  Plectin–intermediate filament partnership in skin, skeletal muscle, and peripheral nerve , 2013, Histochemistry and Cell Biology.

[35]  P. Bonaldo,et al.  Mitochondrial dysfunction and defective autophagy in the pathogenesis of collagen VI muscular dystrophies. , 2013, Cold Spring Harbor perspectives in biology.

[36]  M. Birnbaum,et al.  MICU1 Is an Essential Gatekeeper for MCU-Mediated Mitochondrial Ca2+ Uptake that Regulates Cell Survival , 2012, Cell.

[37]  Rosario Rizzuto,et al.  Mitochondria as sensors and regulators of calcium signalling , 2012, Nature Reviews Molecular Cell Biology.

[38]  W. Baumann,et al.  FIB preparation and SEM investigations for three-dimensional analysis of cell cultures on microneedle arrays. , 2012, Scanning.

[39]  A. E. Rossi,et al.  Differential impact of mitochondrial positioning on mitochondrial Ca(2+) uptake and Ca(2+) spark suppression in skeletal muscle. , 2011, American journal of physiology. Cell physiology.

[40]  V. Mootha,et al.  Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter , 2011, Nature.

[41]  Bradley C. Lowekamp,et al.  Ion-abrasion scanning electron microscopy reveals distorted liver mitochondrial morphology in murine methylmalonic acidemia. , 2010, Journal of structural biology.

[42]  Elena Bisetto,et al.  Cyclophilin D in mitochondrial pathophysiology. , 2010, Biochimica et biophysica acta.

[43]  V. Shoshan-Barmatz,et al.  NCLX is an essential component of mitochondrial Na+/Ca2+ exchange , 2009, Proceedings of the National Academy of Sciences.

[44]  P. Braghetta,et al.  The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1−/− myopathic mice , 2009, British journal of pharmacology.

[45]  E. Griffiths Mitochondrial calcium transport in the heart: physiological and pathological roles. , 2009, Journal of molecular and cellular cardiology.

[46]  F. Inserra,et al.  Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. , 2009, American journal of physiology. Heart and circulatory physiology.

[47]  A. E. Rossi,et al.  Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. , 2008, Molecular biology of the cell.

[48]  H. Westerblad,et al.  Mice expressing L345P mutant desmin exhibit morphological and functional changes of skeletal and cardiac mitochondria , 2008, Journal of Muscle Research and Cell Motility.

[49]  A. Ferlini,et al.  Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies , 2008, Proceedings of the National Academy of Sciences.

[50]  S. Baylor,et al.  Simulation of Ca2+ Movements within the Sarcomere of Fast-Twitch Mouse Fibers Stimulated by Action Potentials , 2007, The Journal of general physiology.

[51]  A. Ferlini,et al.  Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins , 2007, Proceedings of the National Academy of Sciences.

[52]  T. Toda,et al.  The genetic and molecular basis of muscular dystrophy: roles of cell-matrix linkage in the pathogenesis , 2006, Journal of Human Genetics.

[53]  Vera Rogiers,et al.  Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. , 2006, Current drug metabolism.

[54]  William A Mohler,et al.  Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. , 2006, Biophysical journal.

[55]  Jianjie Ma,et al.  Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle , 2005, Nature Cell Biology.

[56]  Zhigang Xue,et al.  Desminopathies in muscle disease , 2004, The Journal of pathology.

[57]  P. Brookes,et al.  Calcium, ATP, and ROS: a mitochondrial love-hate triangle. , 2004, American journal of physiology. Cell physiology.

[58]  T. Pozzan,et al.  In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction , 2004, The Journal of cell biology.

[59]  R. Robinson,et al.  Structure of the N‐terminal half of gelsolin bound to actin: roles in severing, apoptosis and FAF , 2004, The EMBO journal.

[60]  N. Balaban,et al.  Adhesion-dependent cell mechanosensitivity. , 2003, Annual review of cell and developmental biology.

[61]  C. Reggiani,et al.  Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency , 2003, Nature Genetics.

[62]  P. Janmey,et al.  Visualizing the Ca2+-dependent activation of gelsolin by using synchrotron footprinting , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  H. Westerblad,et al.  Increased mitochondrial mass in mitochondrial myopathy mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  E. Brandan,et al.  ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression. , 2002, American journal of physiology. Cell physiology.

[65]  Y. Tsujimoto,et al.  Gelsolin Inhibits Apoptosis by Blocking Mitochondrial Membrane Potential Loss and Cytochrome c Release* , 2000, The Journal of Biological Chemistry.

[66]  D. Bers,et al.  Oxygen-bridged Dinuclear Ruthenium Amine Complex Specifically Inhibits Ca2+ Uptake into Mitochondria in Vitroand in Situ in Single Cardiac Myocytes* , 1998, The Journal of Biological Chemistry.

[67]  D. Allen,et al.  The effects of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle. , 1995, The Journal of physiology.

[68]  A. Halestrap,et al.  Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. , 1992, The Biochemical journal.

[69]  A. Halestrap,et al.  Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. , 1990, The Biochemical journal.

[70]  E. Fielden,et al.  A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus. , 1977, The Biochemical journal.

[71]  D. Allen,et al.  Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. , 2016, Physiological reviews.

[72]  S. Boncompagni,et al.  Role of Mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle. , 2015, Cell calcium.

[73]  Oliver Friedrich,et al.  Automated Multiscale Morphometry of Muscle Disease From Second Harmonic Generation Microscopy Using Tensor-Based Image Processing , 2012, IEEE Transactions on Biomedical Engineering.

[74]  T. Deerinck,et al.  NCMIR methods for 3D EM: a new protocol for preparation of biological specimens for serial block face scanning electron microscopy , 2010 .

[75]  H. Westerblad,et al.  Increased mitochondrial Ca 2 1 and decreased sarcoplasmic reticulum Ca 2 1 in mitochondrial myopathy , 2008 .

[76]  M. Crompton,et al.  Inhibition by cyclosporin A of a Ca 2 +-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress , 2005 .

[77]  B. Geiger,et al.  Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. , 2001, Nature reviews. Molecular cell biology.

[78]  M. Duchen Mitochondria and Ca(2+)in cell physiology and pathophysiology. , 2000, Cell calcium.

[79]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[80]  C. Garbe,et al.  Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/path.4136 , 2022 .