Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered

Efficient algorithms are of fundamental importance for the discovery of optimal control designs for coherent control of quantum processes. One important class of algorithms is sequential update algorithms, generally attributed to Krotov. Although widely and often successfully used, the associated theory is often involved and leaves many crucial questions unanswered, from the monotonicity and convergence of the algorithm to discretization effects, leading to the introduction of ad hoc penalty terms and suboptimal update schemes detrimental to the performance of the algorithm. We present a general framework for sequential update algorithms including specific prescriptions for efficient update rules with inexpensive dynamic search length control, taking into account discretization effects and eliminating the need for ad hoc penalty terms. The latter, despite being necessary for regularizing the problem in the limit of infinite time resolution, i.e. the continuum limit, are shown to be undesirable and unnecessary in the practically relevant case of finite time resolution. Numerical examples show that the ideas underlying many of these results extend even beyond what can be rigorously proved.

[1]  M. J. D. Powell,et al.  On search directions for minimization algorithms , 1973, Math. Program..

[2]  Physical Review Letters 63 , 1989 .

[3]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[4]  David J. Tannor,et al.  Controlled dissociation of I2 via optical transitions between the X and B electronic states , 1993 .

[5]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[6]  Ivanov,et al.  Routes to control of intense-field atomic polarizability. , 1995, Physical review letters.

[7]  H. Rabitz,et al.  RAPIDLY CONVERGENT ITERATION METHODS FOR QUANTUM OPTIMAL CONTROL OF POPULATION , 1998 .

[8]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[9]  著者なし 16 , 1871, Animals at the End of the World.

[10]  L. González,et al.  Ultrafast photoinduced dissipative hydrogen switching dynamics in thioacetylacetone , 1999 .

[11]  Herschel Rabitz,et al.  Monotonically convergent algorithm for quantum optimal control with dissipation , 1999 .

[12]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[13]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[14]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[15]  David J. Tannor,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .

[16]  F. Légaré,et al.  Sub-laser-cycle electron pulses for probing molecular dynamics , 2002, Nature.

[17]  R. de Vivie-Riedle,et al.  Quantum computation with vibrationally excited molecules. , 2002, Physical review letters.

[18]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.

[19]  R. Kosloff,et al.  Optimal control theory for unitary transformations , 2003, quant-ph/0309011.

[20]  Yvon Maday,et al.  New formulations of monotonically convergent quantum control algorithms , 2003 .

[21]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[22]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[23]  L. González,et al.  Deciphering the Reaction Dynamics Underlying Optimal Control Laser Fields , 2003, Science.

[24]  Georg Stadler,et al.  Quantum control of electron-phonon scatterings in artificial atoms. , 2004, Physical review letters.

[25]  Gabriel Turinici,et al.  Generalized monotonically convergent algorithms for solving quantum optimal control problems. , 2004, The Journal of chemical physics.

[26]  Christiane P. Koch,et al.  Stabilization of ultracold molecules using optimal control theory (14 pages) , 2004 .

[27]  Quantum logic via optimal control in holographic dipole traps , 2005, quant-ph/0503180.

[28]  P. Zoller,et al.  Coherent control of trapped ions using off-resonant lasers (13 pages) , 2005 .

[29]  Robert E. Mahony,et al.  Convergence of the Iterates of Descent Methods for Analytic Cost Functions , 2005, SIAM J. Optim..

[30]  V. May,et al.  Femtosecond laser pulse control of multidimensional vibrational dynamics: Computational studies on the pyrazine molecule. , 2006, The Journal of chemical physics.

[31]  Tommaso Calarco,et al.  Microwave potentials and optimal control for robust quantum gates on an atom chip , 2006 .

[32]  W. Neuhauser,et al.  Error-resistant Single Qubit Gates with Trapped Ions , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[33]  E K U Gross,et al.  Optimal control of quantum rings by terahertz laser pulses. , 2007, Physical review letters.

[34]  A. Borzì,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps , 2007, quant-ph/0701094.

[35]  Y. Ohtsuki,et al.  Optimal control of multi-photon isotope separation using ultra-short intense laser pulses: Density operator theory , 2007 .

[36]  V. Bergholm,et al.  Optimal control of coupled Josephson qubits , 2005, quant-ph/0504202.

[37]  Constantin Brif,et al.  Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles , 2007, quant-ph/0702147.

[38]  Julien Salomon,et al.  Convergence of the time-discretized monotonic schemes , 2007 .

[39]  V. May,et al.  Theory of ultrafast nonresonant multiphoton transitions in polyatomic molecules: basics and application to optimal control theory. , 2007, The Journal of chemical physics.

[40]  Constantin Brif,et al.  Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments , 2007, 0712.2935.

[41]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[42]  Sonia Schirmer,et al.  Implementation of quantum gates via optimal control , 2008, 0805.2902.

[43]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[44]  G. V. Winckel,et al.  Optimal control of number squeezing in trapped Bose-Einstein condensates , 2009, 0908.1634.

[45]  S. G. Schirmer,et al.  Implementation of fault-tolerant quantum logic gates via optimal control , 2009, 0907.1635.

[46]  C. F. Roos,et al.  Optimal control of entangling operations for trapped-ion quantum computing , 2008, 0809.1414.

[47]  M. Johanning,et al.  Quantum simulations with cold trapped ions , 2009, 0905.0118.

[48]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[49]  F K Wilhelm,et al.  Optimal control of a qubit coupled to a non-Markovian environment. , 2006, Physical review letters.

[50]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[51]  C. Wunderlich Quantum physics: Trapped ion set to quiver , 2010, Nature.

[52]  Christiane P. Koch,et al.  Vibrational stabilization of ultracold KRb molecules: A comparative study , 2010, 1007.1898.

[53]  Abolfazl Bayat,et al.  Robust entanglement in antiferromagnetic Heisenberg chains by single-spin optimal control , 2009, 0911.5405.

[54]  Sophie Schirmer,et al.  Global control methods for Greenberger-Horne-Zeilinger-state generation on a one-dimensional Ising chain , 2010 .

[55]  Christiane P. Koch,et al.  Erratum: Stabilization of ultracold molecules using optimal control theory [Phys. Rev. A 70, 013402 (2004)] , 2010 .

[56]  David J. Tannor,et al.  Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods , 2011 .