On the complexity of computing determinants

Abstract.We present new baby steps/giant steps algorithms of asymptotically fast running time for dense matrix problems. Our algorithms compute the determinant, characteristic polynomial, Frobenius normal form and Smith normal form of a dense n × n matrix A with integer entries in $$\left( {n^{3.2} \log \left\| A \right\|} \right)^{1 + o(1)} $$ and $$\left( {n^{2.697263} \log \left\| A \right\|} \right)^{1 + o(1)} $$ bit operations; here $$\left\| A \right\|$$ denotes the largest entry in absolute value and the exponent adjustment by “+o(1)” captures additional factors $$C_1 (\log n)^{C_2 } \left( {\log \log \left\| A \right\|} \right)^{C_3 } $$ for positive real constants C1, C2, C3. The bit complexity $$\left( {n^{3.2} \log \left\| A \right\|} \right)^{1 + o(1)} $$ results from using the classical cubic matrix multiplication algorithm. Our algorithms are randomized, and we can certify that the output is the determinant of A in a Las Vegas fashion. The second category of problems deals with the setting where the matrix A has elements from an abstract commutative ring, that is, when no divisions in the domain of entries are possible. We present algorithms that deterministically compute the determinant, characteristic polynomial and adjoint of A with n3.2+o(1) and O(n2.697263) ring additions, subtractions and multiplications.

[1]  B. D. Saunders,et al.  Efficient matrix preconditioners for black box linear algebra , 2002 .

[2]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[3]  Erich Kaltofen,et al.  Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..

[4]  Arnold Schönhage,et al.  Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.

[5]  Manuel Bronstein,et al.  Fast deterministic computation of determinants of dense matrices , 1999, ISSAC '99.

[6]  Gilles Villard,et al.  On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[7]  Ellis Horowitz,et al.  On Decreasing the Computing Time for Modular Arithmetic , 1971, SWAT.

[8]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[9]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[10]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[11]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[12]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[13]  Arne Storjohann,et al.  The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..

[14]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[15]  Arne Storjohann,et al.  On lattice reduction for polynomial matrices , 2003, J. Symb. Comput..

[16]  Claude-Pierre Jeannerod,et al.  Straight-line computation of the polynomial matrix inverse , 2006 .

[17]  Gilles Villard Calcul formel et parallélisme : résolution de systèmes linéaires. (Parallel algebraic computation. Solution of linear systems) , 1988 .

[18]  Victor Y. Pan,et al.  Fast Rectangular Matrix Multiplication and Applications , 1998, J. Complex..

[19]  KaltofenErich Greatest common divisors of polynomials given by straight-line programs , 1988 .

[20]  G. Villard A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .

[21]  H. Heinimann Swiss Federal Institute of Technology (ETH) , 2002 .

[22]  Victor Y. Pan,et al.  Processor-efficient parallel solution of linear systems. II. The positive characteristic and singular cases , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[23]  Erich Kaltofen,et al.  On computing determinants of matrices without divisions , 1992, ISSAC '92.

[24]  Mark Giesbrecht,et al.  Computing Rational Forms of Integer Matrices , 2002, J. Symb. Comput..

[25]  Emmanuel Thomé,et al.  Subquadratic Computation of Vector Generating Polynomials and Improvement of the Block Wiedemann Algorithm , 2002, J. Symb. Comput..

[26]  Erich Kaltofen,et al.  Greatest common divisors of polynomials given by straight-line programs , 1988, JACM.

[27]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[28]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[29]  Victor Y. Pan,et al.  Sign Determination in Residue Number Systems , 1999, Theor. Comput. Sci..

[30]  B. Dickinson,et al.  A minimal realization algorithm for matrix sequences , 1973, CDC 1973.

[31]  Victor Y. Pan Randomized Acceleration of Fundamental Matrix Computations , 2002, STACS.

[32]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[33]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[34]  Thomas Kailath,et al.  Linear Systems , 1980 .

[35]  G. Villard Computing the Frobenius Normal Form of a Sparse Matrix , 2000 .

[36]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[37]  Jürgen Gerhard,et al.  Fast Modular Algorithms for Squarefree Factorization and Hermite Integration , 2001, Applicable Algebra in Engineering, Communication and Computing.

[38]  Mariette Yvinec,et al.  A Complete Analysis of Clarkson's Algorithm for Safe Determinant Evaluation , 1996 .

[39]  Sartaj Sahni,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[40]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[41]  Don Coppersmith,et al.  Rectangular Matrix Multiplication Revisited , 1997, J. Complex..

[42]  Erich Kaltofen,et al.  Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.

[43]  E. Kaltofen,et al.  Computing the sign or the value of the determinant of an integer matrix, a complexity survey , 2004 .

[44]  Mark Giesbrecht,et al.  Fast computation of the Smith form of a sparse integer matrix , 2002, computational complexity.

[45]  J. Urgen Gerhard Fast Modular Algorithms for Squarefree Factorization and Hermite Integration , 1999 .

[46]  Shuhong Gao,et al.  Random Krylov Spaces over Finite Fields , 2003, SIAM J. Discret. Math..

[47]  Erich Kaltofen An output-sensitive variant of the baby steps/giant steps determinant algorithm , 2002, ISSAC '02.

[48]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[49]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[50]  T. R. Seifullin Acceleration of Computation of Determinants and Characteristic Polynomials without Divisions , 2003 .

[51]  Erich Kaltofen,et al.  On approximate irreducibility of polynomials in several variables , 2003, ISSAC '03.

[52]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[53]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[54]  Erich Kaltofen,et al.  ON THE COMPLEXITY OF COMPUTING DETERMINANTS , 2001 .

[55]  V. Popov Some properties of the control systems with irreducible matrix — Transfer functions , 1970 .

[56]  Claude-Pierre Jeannerod,et al.  Essentially optimal computation of the inverse of generic polynomial matrices , 2005, J. Complex..

[57]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[58]  Emmanuel Thomé,et al.  Fast computation of linear generators for matrix sequences and application to the block Wiedemann algorithm , 2001, ISSAC '01.

[59]  Arne Storjohann,et al.  Certified dense linear system solving , 2004, J. Symb. Comput..

[60]  Robert T. Moenck,et al.  Fast computation of GCDs , 1973, STOC.

[61]  Jeffrey D. Smith,et al.  Design and Analysis of Algorithms , 2009, Lecture Notes in Computer Science.

[62]  Victor Y. Pan,et al.  Computing the Determinant and the Characteristic Polynomial of a Matrix via Solving Linear Systems of Equations , 1988, Inf. Process. Lett..

[63]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[64]  Arne Storjohann,et al.  High-order lifting and integrality certification , 2003, J. Symb. Comput..

[65]  Erich Kaltofen,et al.  Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel's algorithm , 2000, ISSAC.

[66]  Paul Walton Purdom,et al.  The Analysis of Algorithms , 1995 .

[67]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[68]  Ioannis Z. Emiris,et al.  A Complete Implementation for Computing General Dimensional Convex Hulls , 1998, Int. J. Comput. Geom. Appl..

[69]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[70]  T. Muldersa,et al.  On lattice reduction for polynomial matrices , 2003 .

[71]  Gilles Villard,et al.  Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.

[72]  Erich Kaltofen,et al.  Challenges of Symbolic Computation: My Favorite Open Problems , 2000, J. Symb. Comput..

[73]  Stephen M. Watt,et al.  Scratchpad II: An Abstract Datatype System for Mathematical Computation , 1988, Trends in Computer Algebra.

[74]  Erich Kaltofen,et al.  Black box linear algebra with the linbox library , 2002 .

[75]  Adhemar Bultheel,et al.  A general module theoretic framework for vector M-Padé and matrix rational interpolation , 2005, Numerical Algorithms.

[76]  Erich Kaltofen,et al.  On randomized Lanczos algorithms , 1997, ISSAC.

[77]  Jean Louis Dornstetter On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.

[78]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[79]  Numerische Mathematik Exact Solution of Linear Equations Using P-Adie Expansions* , 2005 .

[80]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..