On the complexity of computing determinants
暂无分享,去创建一个
[1] B. D. Saunders,et al. Efficient matrix preconditioners for black box linear algebra , 2002 .
[2] D. Coppersmith. Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .
[3] Erich Kaltofen,et al. Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..
[4] Arnold Schönhage,et al. Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.
[5] Manuel Bronstein,et al. Fast deterministic computation of determinants of dense matrices , 1999, ISSAC '99.
[6] Gilles Villard,et al. On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[7] Ellis Horowitz,et al. On Decreasing the Computing Time for Modular Arithmetic , 1971, SWAT.
[8] A. Storjohann. Algorithms for matrix canonical forms , 2000 .
[9] David Y. Y. Yun,et al. Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.
[10] Erich Kaltofen,et al. On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.
[11] Richard J. Lipton,et al. A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..
[12] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[13] Arne Storjohann,et al. The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..
[14] Erich Kaltofen,et al. On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.
[15] Arne Storjohann,et al. On lattice reduction for polynomial matrices , 2003, J. Symb. Comput..
[16] Claude-Pierre Jeannerod,et al. Straight-line computation of the polynomial matrix inverse , 2006 .
[17] Gilles Villard. Calcul formel et parallélisme : résolution de systèmes linéaires. (Parallel algebraic computation. Solution of linear systems) , 1988 .
[18] Victor Y. Pan,et al. Fast Rectangular Matrix Multiplication and Applications , 1998, J. Complex..
[19] KaltofenErich. Greatest common divisors of polynomials given by straight-line programs , 1988 .
[20] G. Villard. A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .
[21] H. Heinimann. Swiss Federal Institute of Technology (ETH) , 2002 .
[22] Victor Y. Pan,et al. Processor-efficient parallel solution of linear systems. II. The positive characteristic and singular cases , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[23] Erich Kaltofen,et al. On computing determinants of matrices without divisions , 1992, ISSAC '92.
[24] Mark Giesbrecht,et al. Computing Rational Forms of Integer Matrices , 2002, J. Symb. Comput..
[25] Emmanuel Thomé,et al. Subquadratic Computation of Vector Generating Polynomials and Improvement of the Block Wiedemann Algorithm , 2002, J. Symb. Comput..
[26] Erich Kaltofen,et al. Greatest common divisors of polynomials given by straight-line programs , 1988, JACM.
[27] J. Rosser,et al. Approximate formulas for some functions of prime numbers , 1962 .
[28] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[29] Victor Y. Pan,et al. Sign Determination in Residue Number Systems , 1999, Theor. Comput. Sci..
[30] B. Dickinson,et al. A minimal realization algorithm for matrix sequences , 1973, CDC 1973.
[31] Victor Y. Pan. Randomized Acceleration of Fundamental Matrix Computations , 2002, STACS.
[32] B. Beckermann,et al. A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..
[33] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[34] Thomas Kailath,et al. Linear Systems , 1980 .
[35] G. Villard. Computing the Frobenius Normal Form of a Sparse Matrix , 2000 .
[36] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[37] Jürgen Gerhard,et al. Fast Modular Algorithms for Squarefree Factorization and Hermite Integration , 2001, Applicable Algebra in Engineering, Communication and Computing.
[38] Mariette Yvinec,et al. A Complete Analysis of Clarkson's Algorithm for Safe Determinant Evaluation , 1996 .
[39] Sartaj Sahni,et al. Analysis of algorithms , 2000, Random Struct. Algorithms.
[40] Jr. G. Forney,et al. Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .
[41] Don Coppersmith,et al. Rectangular Matrix Multiplication Revisited , 1997, J. Complex..
[42] Erich Kaltofen,et al. Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.
[43] E. Kaltofen,et al. Computing the sign or the value of the determinant of an integer matrix, a complexity survey , 2004 .
[44] Mark Giesbrecht,et al. Fast computation of the Smith form of a sparse integer matrix , 2002, computational complexity.
[45] J. Urgen Gerhard. Fast Modular Algorithms for Squarefree Factorization and Hermite Integration , 1999 .
[46] Shuhong Gao,et al. Random Krylov Spaces over Finite Fields , 2003, SIAM J. Discret. Math..
[47] Erich Kaltofen. An output-sensitive variant of the baby steps/giant steps determinant algorithm , 2002, ISSAC '02.
[48] M. G. Bruin,et al. A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .
[49] Joseph F. Traub,et al. On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.
[50] T. R. Seifullin. Acceleration of Computation of Determinants and Characteristic Polynomials without Divisions , 2003 .
[51] Erich Kaltofen,et al. On approximate irreducibility of polynomials in several variables , 2003, ISSAC '03.
[52] Arne Storjohann,et al. Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.
[53] Manindra Agrawal,et al. PRIMES is in P , 2004 .
[54] Erich Kaltofen,et al. ON THE COMPLEXITY OF COMPUTING DETERMINANTS , 2001 .
[55] V. Popov. Some properties of the control systems with irreducible matrix — Transfer functions , 1970 .
[56] Claude-Pierre Jeannerod,et al. Essentially optimal computation of the inverse of generic polynomial matrices , 2005, J. Complex..
[57] Douglas H. Wiedemann. Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.
[58] Emmanuel Thomé,et al. Fast computation of linear generators for matrix sequences and application to the block Wiedemann algorithm , 2001, ISSAC '01.
[59] Arne Storjohann,et al. Certified dense linear system solving , 2004, J. Symb. Comput..
[60] Robert T. Moenck,et al. Fast computation of GCDs , 1973, STOC.
[61] Jeffrey D. Smith,et al. Design and Analysis of Algorithms , 2009, Lecture Notes in Computer Science.
[62] Victor Y. Pan,et al. Computing the Determinant and the Characteristic Polynomial of a Matrix via Solving Linear Systems of Equations , 1988, Inf. Process. Lett..
[63] Larry J. Stockmeyer,et al. On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..
[64] Arne Storjohann,et al. High-order lifting and integrality certification , 2003, J. Symb. Comput..
[65] Erich Kaltofen,et al. Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel's algorithm , 2000, ISSAC.
[66] Paul Walton Purdom,et al. The Analysis of Algorithms , 1995 .
[67] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[68] Ioannis Z. Emiris,et al. A Complete Implementation for Computing General Dimensional Convex Hulls , 1998, Int. J. Comput. Geom. Appl..
[69] Claude-Pierre Jeannerod,et al. On the complexity of polynomial matrix computations , 2003, ISSAC '03.
[70] T. Muldersa,et al. On lattice reduction for polynomial matrices , 2003 .
[71] Gilles Villard,et al. Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.
[72] Erich Kaltofen,et al. Challenges of Symbolic Computation: My Favorite Open Problems , 2000, J. Symb. Comput..
[73] Stephen M. Watt,et al. Scratchpad II: An Abstract Datatype System for Mathematical Computation , 1988, Trends in Computer Algebra.
[74] Erich Kaltofen,et al. Black box linear algebra with the linbox library , 2002 .
[75] Adhemar Bultheel,et al. A general module theoretic framework for vector M-Padé and matrix rational interpolation , 2005, Numerical Algorithms.
[76] Erich Kaltofen,et al. On randomized Lanczos algorithms , 1997, ISSAC.
[77] Jean Louis Dornstetter. On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.
[78] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[79] Numerische Mathematik. Exact Solution of Linear Equations Using P-Adie Expansions* , 2005 .
[80] Masao Kasahara,et al. A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..