Classifying Glaucoma with Image-Based Features from Fundus Photographs
暂无分享,去创建一个
László G. Nyúl | Joachim Hornegger | Jörg Meier | Georg Michelson | Rüdiger Bock | J. Hornegger | G. Michelson | L. Nyúl | L. G. Nyúl | Rüdiger Bock | Jörg Meier
[1] Michael H. Goldbaum,et al. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels , 2003, IEEE Transactions on Medical Imaging.
[2] Pat Langley,et al. Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.
[3] Anil K. Jain,et al. Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.
[4] Bernhard Schölkopf,et al. A tutorial on ν-support vector machines: Research Articles , 2005 .
[5] N. Swindale,et al. Sector‐Based Analysis of Optic Nerve Head Shape Parameters and Visual Field Indices in Healthy and Glaucomatous Eyes , 1997, Journal of glaucoma.
[6] A. Coleman,et al. Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. , 2002, Investigative ophthalmology & visual science.
[7] Azriel Rosenfeld,et al. Face recognition: A literature survey , 2003, CSUR.
[8] J. Caprioli,et al. Detection of structural damage from glaucoma with confocal laser image analysis. , 1996, Investigative ophthalmology & visual science.
[9] V. Malinovsky,et al. An overview of the Heidelberg Retina Tomograph. , 1996, Journal of the American Optometric Association.
[10] Yoav Freund,et al. Experiments with a New Boosting Algorithm , 1996, ICML.
[11] LinChih-Jen,et al. A tutorial on -support vector machines , 2005 .
[12] W Adler,et al. Simulation based analysis of automated, classification of medical images. , 2004, Methods of information in medicine.
[13] N. Swindale,et al. Automated analysis of normal and glaucomatous optic nerve head topography images. , 2000, Investigative ophthalmology & visual science.
[14] Max A. Viergever,et al. Ridge-based vessel segmentation in color images of the retina , 2004, IEEE Transactions on Medical Imaging.
[15] Mark A. Hall,et al. Correlation-based Feature Selection for Machine Learning , 2003 .
[16] T. Sejnowski,et al. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. , 2004, Investigative ophthalmology & visual science.
[17] Heinrich Niemann,et al. Appearance-based object recognition using optimal feature transforms , 2000, Pattern Recognit..
[18] E Sivalingam,et al. Glaucoma: an overview. , 1996, Journal of ophthalmic nursing & technology.
[19] Charles V. Stewart,et al. Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy , 2006, IEEE Transactions on Biomedical Engineering.
[20] László G. Nyúl,et al. Effects of Preprocessing Eye Fundus Images on Appearance Based Glaucoma Classification , 2007, CAIP.
[21] Heinrich Niemann,et al. Automated segmentation of the optic nerve head for diagnosis of glaucoma , 2005, Medical Image Anal..