Phosphoinositide-3-kinase/akt - dependent signaling is required for maintenance of [Ca2+]i,ICa, and Ca2+ transients in HL-1 cardiomyocytes

[1]  David L. Williams,et al.  Lipopolysaccharides directly decrease Ca2+ oscillations and the hyperpolarization-activated nonselective cation current If in immortalized HL-1 cardiomyocytes. , 2010, American journal of physiology. Cell physiology.

[2]  David L. Williams,et al.  TLR2 ligands induce cardioprotection against ischaemia/reperfusion injury through a PI3K/Akt-dependent mechanism. , 2010, Cardiovascular research.

[3]  M. Horie,et al.  Characterization of the Rapidly Activating Delayed Rectifier Potassium Current, IKr, in HL-1 Mouse Atrial Myocytes , 2010, Journal of Membrane Biology.

[4]  J. Chvojka,et al.  Reduced L-type calcium current in ventricular myocytes from pigs with hyperdynamic septic shock* , 2010, Critical care medicine.

[5]  E. Entcheva,et al.  Loss of Cardiac Phosphoinositide 3-Kinase p110&agr; Results in Contractile Dysfunction , 2009, Circulation.

[6]  Y. Miyauchi,et al.  lipopolysaccharide induces atrial arrhythmogenesis via down-regulation of L-type Ca2+ channel genes in rats. , 2009, International heart journal.

[7]  D. Catalucci,et al.  Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability , 2009, The Journal of Cell Biology.

[8]  D. Catalucci,et al.  Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability , 2009, The Journal of cell biology.

[9]  J. Padbury,et al.  Temporally controlled overexpression of cardiac-specific PI3Kalpha induces enhanced myocardial contractility--a new transgenic model. , 2008, American journal of physiology. Heart and circulatory physiology.

[10]  M. Zvelebil,et al.  Exploring the specificity of the PI3K family inhibitor LY294002. , 2007, The Biochemical journal.

[11]  J. Kalbfleisch,et al.  Glucan phosphate attenuates cardiac dysfunction and inhibits cardiac MIF expression and apoptosis in septic mice. , 2006, American journal of physiology. Heart and circulatory physiology.

[12]  B. Chandrasekar,et al.  Interleukin-18 Is a Pro-hypertrophic Cytokine That Acts through a Phosphatidylinositol 3-Kinase-Phosphoinositide-dependent Kinase-1-Akt-GATA4 Signaling Pathway in Cardiomyocytes* , 2005, Journal of Biological Chemistry.

[13]  Ursula Bommhardt,et al.  Akt Decreases Lymphocyte Apoptosis and Improves Survival in Sepsis1 , 2004, The Journal of Immunology.

[14]  W. Claycomb,et al.  Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. , 2004, American journal of physiology. Heart and circulatory physiology.

[15]  David L. Williams,et al.  Modulating Toll-like receptor mediated signaling by (1-->3)-beta-D-glucan rapidly induces cardioprotection. , 2004, Cardiovascular research.

[16]  J. Kalbfleisch,et al.  Modulation of the Phosphoinositide 3-Kinase Pathway Alters Innate Resistance to Polymicrobial Sepsis 1 , 2004, The Journal of Immunology.

[17]  C. Croce,et al.  Mechanism of Enhanced Cardiac Function in Mice with Hypertrophy Induced by Overexpressed Akt* , 2003, Journal of Biological Chemistry.

[18]  S. Koyasu,et al.  PI3K and negative regulation of TLR signaling. , 2003, Trends in immunology.

[19]  P. Corvol,et al.  Akt Is a Major Downstream Target of PI3-Kinase Involved in Angiotensin II–Induced Proliferation , 2003, Hypertension.

[20]  Elisabetta Cerbai,et al.  Functional expression of the hyperpolarization‐activated, non‐selective cation current If in immortalized HL‐1 cardiomyocytes , 2002, The Journal of physiology.

[21]  N. Mackman,et al.  The Phosphatidylinositol 3-Kinase-Akt Pathway Limits Lipopolysaccharide Activation of Signaling Pathways and Expression of Inflammatory Mediators in Human Monocytic Cells* , 2002, The Journal of Biological Chemistry.

[22]  Lewis C Cantley,et al.  The phosphoinositide 3-kinase pathway. , 2002, Science.

[23]  L. Cantley,et al.  Phosphoinositide 3-kinase in immunological systems. , 2002, Seminars in immunology.

[24]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[25]  E. Lakatta,et al.  Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells , 2001, Nature.

[26]  D. Bers,et al.  Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. , 1999, Cardiovascular research.

[27]  N J Izzo,et al.  HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  T. Hwang,et al.  Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. , 1997, American journal of physiology. Heart and circulatory physiology.

[29]  A. Harken,et al.  Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Jennings,et al.  Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. , 1986, Circulation.

[31]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[32]  Xiang Gao,et al.  Attenuation of cardiac dysfunction by HSPA12B in endotoxin-induced sepsis in mice through a PI3K-dependent mechanism. , 2011, Cardiovascular research.

[33]  M. Xia,et al.  Functional expression of L- and T-type Ca2+ channels in murine HL-1 cells. , 2004, Journal of molecular and cellular cardiology.