A hierarchical time-splitting approach for solving finite-time optimal control problems

We present a hierarchical computation approach for solving finite-time optimal control problems using operator splitting methods. The first split is performed over the time index and leads to as many subproblems as the length of the prediction horizon. Each subproblem is solved in parallel and further split into three by separating the objective from the equality and inequality constraints respectively, such that an analytic solution can be achieved for each subproblem. The proposed approach leads to a highly parallelizable nested decomposition scheme. We present a numerical comparison with the standard state-of-the-art solver SDPT3, and provide analytic solutions to several elements of the algorithm, which enhances its applicability in fast large-scale applications.

[1]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[2]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[3]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[4]  W. Marsden I and J , 2012 .

[5]  N. Maculan,et al.  Global optimization : from theory to implementation , 2006 .

[6]  Timothy A. Davis,et al.  Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.

[7]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[8]  Stephen P. Boyd,et al.  Plenary talk: Performance bounds and suboptimal policies for multi-period investment , 2013, 22nd Mediterranean Conference on Control and Automation.

[9]  Timothy A. Davis,et al.  Algorithm 8 xx : a concise sparse Cholesky factorization package , 2004 .

[10]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[11]  Giorgos Stathopoulos Fast optimization-based control and estimation using operator splitting methods , 2012 .

[12]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[13]  N. T. Hoai-Phuong,et al.  Optimization under Composite Monotonic Constraints and Constrained Optimization over the Efficient Set , 2006 .

[14]  William S. Levine,et al.  Methods for efficient implementation of Model Predictive Control on multiprocessor systems , 2010, 2010 IEEE International Conference on Control Applications.

[15]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[16]  Brett Ninness,et al.  FPGA Implementation of an Interior-Point Solution for Linear Model Predictive Control , 2011 .

[17]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[18]  Stephen P. Boyd,et al.  CVXGEN: a code generator for embedded convex optimization , 2011, Optimization and Engineering.

[19]  Eric C. Kerrigan,et al.  Parallel MPC for Real-Time FPGA-based Implementation , 2011 .

[20]  George A. Constantinides,et al.  Tutorial paper: Parallel architectures for model predictive control , 2009, 2009 European Control Conference (ECC).

[21]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[22]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[23]  Stephen P. Boyd,et al.  A Splitting Method for Optimal Control , 2013, IEEE Transactions on Control Systems Technology.

[24]  Rolf Findeisen,et al.  Parallel Solutions of Model Predictive Control Using the Alternating Direction Method of Multipliers , 2012 .