From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons: A review

Abstract Methanol to gasoline (MTG) process is among the methanol to hydrocarbon (MTH) technologies with industrial interest. The key sequential routes involved syngas (H2, CO) production, methanol synthesis and the subsequent upgrade to gasoline range paraffins via the MTG process. The paper reviewed recent literature on prospective catalysts for the MTG technology. Issues related to the role of catalyst-topology, acidity properties, reaction parameters and their effects on catalytic activity, selectivity and catalyst lifetime have been critically covered. The review also captured background details on the updates related to the syngas production and subsequent upgrade to methanol prior to the MTG reaction.

[1]  B. Kelleher,et al.  Review of literature on catalysts for biomass gasification , 2001 .

[2]  A. Hamnett,et al.  Mechanism and electrocatalysis in the direct methanol fuel cell , 1997 .

[3]  Jing Liu,et al.  Enhanced catalytic isomerization of α-pinene over mesoporous zeolite beta of low Si/Al ratio by NaOH treatment , 2012 .

[4]  Sebastián E. Collins,et al.  Hydrogen Spillover in Ga2O3–Pd/SiO2 Catalysts for Methanol Synthesis from CO2/H2 , 2005 .

[5]  U. Olsbye,et al.  Methanol to hydrocarbons over large cavity zeolites: Toward a unified description of catalyst deactivation and the reaction mechanism , 2010 .

[6]  C. Christensen,et al.  Catalysis with hierarchical zeolites , 2011 .

[7]  J. Moffat,et al.  Conversion of methanol into hydrocarbons over ammonium 12-tungstophosphate , 1983 .

[8]  K. Lillerud,et al.  Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH , 2008 .

[9]  Weiguo Song,et al.  The mechanism of methanol to hydrocarbon catalysis. , 2003, Accounts of chemical research.

[10]  K. Lillerud,et al.  Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. , 2006, Journal of the American Chemical Society.

[11]  Cheng Yang,et al.  A ZSM-5/MCM-48 based catalyst for methanol to gasoline conversion , 2013 .

[12]  W. Cao,et al.  Study on the deactivation and regeneration of the ZSM-5 catalyst used in methanol to olefins , 2011 .

[13]  V. Erofeev,et al.  Production of high-octane gasoline from straight-run gasoline on ZSM-5 modified zeolites , 2014, Theoretical Foundations of Chemical Engineering.

[14]  Katsunori Tanaka,et al.  Control of acid-site location of ZSM-5 zeolite membrane and its application to the MTO reaction , 2005 .

[15]  T. Fujitani,et al.  Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen , 1995 .

[16]  Xiaoming Guo,et al.  Highly selective hydrogenation of CO2 to methanol over CuO–ZnO–ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method , 2015 .

[17]  Jianjun Liu,et al.  Nickel‐Supported on La2Sn2O7 and La2Zr2O7 Pyrochlores for Methane Steam Reforming: Insight into the Difference between Tin and Zirconium in the B Site of the Compound , 2014 .

[18]  Laurent Falk,et al.  Methanol synthesis from CO2 and H2 in multi-tubular fixed-bed reactor and multi-tubular reactor filled with monoliths , 2014 .

[19]  S. Peng,et al.  Preparation of Nanosize Cu–ZnO/Al2O3Catalyst for Methanol Synthesis by Phase Transfer with Metal Surfactant: 1. A Study of Preparation Conditions , 1996 .

[20]  Weiguo Song,et al.  PULSE-QUENCH CATALYTIC REACTOR STUDIES REVEAL A CARBON-POOL MECHANISM IN METHANOL-TO-GASOLINE CHEMISTRY ON ZEOLITE HZSM-5 , 1998 .

[21]  M. Makkee,et al.  Fluid catalytic cracking: Processing opportunities for Fischer–Tropsch waxes and vegetable oils to produce transportation fuels and light olefins , 2012 .

[22]  Stanley G. Brandenberger,et al.  One-step catalytic synthesis of 2,2,3-trimethylbutane from methanol , 1978 .

[23]  Seungwoo Lee,et al.  Acid Strength Control in MFI Zeolite for the Methanol-to-Hydrocarbons (MTH) Reaction , 2014 .

[24]  G. Moradi,et al.  Methanol dehydration over alkali-modified H-ZSM-5; effect of temperature and water dilution on products distribution , 2013 .

[25]  Unni Olsbye,et al.  Conversion of Methanol to Alkenes over Medium-and Large-Pore Acidic Zeolites : Steric Manipulation of the Reaction Intermediates Governs the Ethene/Propene Product Selectivity , 2007 .

[26]  A. Kiennemann,et al.  Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts , 2006 .

[27]  Angeliki A. Lemonidou,et al.  Methane steam reforming at low temperature: Effect of light alkanes’ presence on coke formation , 2015 .

[28]  Leonard Evans,et al.  GASOLINE CONSUMPTION IN URBAN TRAFFIC , 1976 .

[29]  Gao Qing Lu,et al.  Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 , 2003 .

[30]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[31]  Andrew Dicks,et al.  Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells , 1997 .

[32]  C. Courson,et al.  Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming , 2000 .

[33]  A. Dalai,et al.  The Role of Catalytic Site Deposition on Cobalt Catalysts Supported on Carbon Nanotubes for Fisher-Trospch Synthesis , 2012 .

[34]  I. Wender Reactions of synthesis gas , 1996 .

[35]  Song Wang,et al.  The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation , 2011 .

[36]  V. Choudhary,et al.  Simultaneous conversion of methane and methanol into gasoline over bifunctional Ga-, Zn-, In-, and/or Mo-modified ZSM-5 zeolites. , 2005, Angewandte Chemie.

[37]  C. Falamaki,et al.  Improvement of HZSM-5 performance by alkaline treatments: Comparative catalytic study in the MTG reactions , 2014 .

[38]  J. Grace,et al.  Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor , 2006 .

[39]  Qinglong Xie,et al.  Syngas production by two-stage method of biomass catalytic pyrolysis and gasification. , 2012, Bioresource technology.

[40]  J. Laherrère,et al.  The End of Cheap Oil , 1998 .

[41]  K. Pant,et al.  Activity of Oxalic Acid Treated ZnO/CuO/HZSM-5 Catalyst for the Transformation of Methanol to Gasoline Range Hydrocarbons , 2008 .

[42]  J. Topp-Jørgensen Topsøe Integrated Gasoline Synthesis – The Tigas Process , 1988 .

[43]  Thomas A. Milne,et al.  Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective zeolites , 1990 .

[44]  W. W. Kaeding,et al.  Production of chemicals from methanol: I. Low molecular weight olefins , 1980 .

[45]  G. S. Litvak,et al.  Effect of the temperature regime of methanol conversion to hydrocarbons on coking of zeolite catalysts and their regeneration , 1988 .

[46]  K. Lillerud,et al.  Shape Selectivity in the Conversion of Methanol to Hydrocarbons: The Catalytic Performance of One-Dimensional 10-Ring Zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1 , 2012 .

[47]  Zhongmin Liu,et al.  Modification of nanocrystalline HZSM-5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in methanol to gasoline reaction , 2013 .

[48]  L. Pino,et al.  Syngas production by methane oxy-steam reforming on Me/CeO2 (Me = Rh, Pt, Ni) catalyst lined on cordierite monoliths , 2015 .

[49]  J. Rostrup-Nielsen New aspects of syngas production and use , 2000 .

[50]  Yangdong Wang,et al.  Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species? , 2013 .

[51]  E. Riensche,et al.  Methane/steam reforming kinetics for solid oxide fuel cells , 1994 .

[52]  E. Derouane,et al.  On the external and intracrystalline surface catalytic activity of pentasil zeolites , 1984 .

[53]  K. Bowker Barnett Shale gas production, Fort Worth Basin: Issues and discussion , 2007 .

[54]  J. F. Haw,et al.  Experimental evidence from H/D exchange studies for the failure of direct C-C coupling mechanisms in the methanol-to-olefin process catalyzed by HSAPO-34. , 2006, Angewandte Chemie.

[55]  H. Goehna,et al.  PRODUCING METHANOL FROM CO2 , 1994 .

[56]  S. Yurchak,et al.  Development of Mobil's Fixed-Bed Methanul-to-Gasoline (MTG) Process , 1988 .

[57]  G. Olah Beyond oil and gas: the methanol economy. , 2006, Angewandte Chemie.

[58]  Weiguo Song,et al.  Roles for Cyclopentenyl Cations in the Synthesis of Hydrocarbons from Methanol on Zeolite Catalyst HZSM-5 , 2000 .

[59]  M. Saito,et al.  Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen , 1996 .

[60]  J. García-Dávila,et al.  Jatropha curcas L. oil hydroconversion over hydrodesulfurization catalysts for biofuel production , 2014 .

[61]  Liyuan Li,et al.  Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization , 2013 .

[62]  Kunio Suzuki,et al.  Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides , 2003 .

[63]  R. Dessau On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins , 1986 .

[64]  Tiansheng Zhao,et al.  Methanol-to-olefins over FeHZSM-5: Further transformation of products , 2014 .

[65]  Lili Wang,et al.  Promoting effect of an aluminum emulsion on catalytic performance of Cu-based catalysts for methanol synthesis from syngas , 2010 .

[66]  Pascale Massiani,et al.  Characterizations and performances of Ni/diatomite catalysts for dry reforming of methane , 2015 .

[67]  Robert G Mcgillivray,et al.  GASOLINE USE BY AUTOMOBILES , 1976 .

[68]  N. Homs,et al.  CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods , 2015 .

[69]  D. Bressler,et al.  Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. , 2007, Bioresource technology.

[70]  G. Olah,et al.  Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. , 2009, The Journal of organic chemistry.

[71]  Y. Matsumura,et al.  Effect of reduction temperature on structural properties and CO/CO2 hydrogenation characteristics of a Pd-CeO2 catalyst , 2001 .

[72]  M. Olazar,et al.  Effect of Si/Al ratio and of acidity of H-ZSM5 zeolites on the primary products of methanol to gasoline conversion , 1996 .

[73]  E. Hensen,et al.  Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction , 2013 .

[74]  Qiongyu Wang,et al.  Surfactant-assisted preparation of Cu/ZnO/Al2O3 catalyst for methanol synthesis from syngas , 2013 .

[75]  Guangxing Li,et al.  Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction , 2011 .

[76]  S. Kolboe,et al.  On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34 , 1996 .

[77]  Charles D. Hollister,et al.  BURIAL OF RADIOACTIVE WASTE UNDER THE SEABED , 1998 .

[78]  E. Hensen,et al.  Comparison of mesoporous SSZ-13 and SAPO-34 zeolite catalysts for the methanol-to-olefins reaction , 2014 .

[79]  T. Mole,et al.  Aromatic co-catalysis of methanol conversion over zeolite catalysts , 1983 .

[80]  Masahiro Saito,et al.  Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction , 2004 .

[81]  M. Taghizadeh,et al.  Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by colloidal silica and metal oxides additives for methanol synthesis from a CO2-rich feed , 2012 .

[82]  D. Świerczyński,et al.  Methanol to hydrocarbons over zeolites with MWW topology: Effect of zeolite texture and acidity , 2011 .

[83]  Wei Wang,et al.  Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. , 2003, Journal of the American Chemical Society.

[84]  Tong Zhang,et al.  New synthesis strategies for Ni/Al2O3-Sil-1 core-shell catalysts for steam reforming of methane , 2014 .

[85]  G. Seo,et al.  IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities , 2009 .

[86]  George E. King,et al.  Thirty Years of Gas Shale Fracturing: What Have We Learned? , 2010 .

[87]  F. Miloua,et al.  Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst , 2009 .

[88]  A. Bridgwater The technical and economic feasibility of biomass gasification for power generation , 1995 .

[89]  S. Saxena,et al.  Selective production of green gasoline by catalytic conversion of Jatropha oil , 2014 .

[90]  M. Saito R&D activities in Japan on methanol synthesis from CO2 and H2 , 1998 .

[91]  M. Haghighi,et al.  Effect of crystallization time on properties and catalytic performance of nanostructured SAPO-34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins , 2015 .

[92]  T. Baba,et al.  The Conversion of Methanol into Hydrocarbons over Dodecatungstophosphoric Acid , 1982 .

[93]  C. Chu,et al.  Methanol conversion to olefins over ZSM-5. I: Effect of temperature and zeolite SiO2/Al2O3 , 1984 .

[94]  Z. Gabelica,et al.  Methanol conversion on acidic ZSM-5, offretite, and mordenite zeolites: A comparative study of the formation and stability of coke deposits , 1981 .

[95]  M. Haghighi,et al.  Dual-template synthesis of nanostructured CoAPSO-34 used in methanol to olefins: Effect of template combinations on catalytic performance and coke formation , 2015 .

[96]  Yong Lu,et al.  The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction , 2015 .

[97]  T. Asanuma,et al.  Methanol to olefins using ZSM-5 zeolite catalyst membrane reactor , 2003 .

[98]  Yuhan Sun,et al.  Influence of fluorine on the performance of fluorine-modified Cu/Zn/Al catalysts for CO2 hydrogenation to methanol , 2013 .

[99]  David A. J. Rand,et al.  Direct methanol–air fuel cells for road transportation , 1999 .

[100]  K. Khilar,et al.  Influence of mineral matter on biomass pyrolysis characteristics , 1995 .

[101]  A. Al-Muhtaseb,et al.  Enhanced production of high octane gasoline blending stock from methanol with improved catalyst life on nano-crystalline ZSM-5 catalyst , 2014 .

[102]  Ivar M. Dahl,et al.  On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34 2. Isotopic Labeling Studies of the Co-reaction of Propene and Methanol , 1994 .

[103]  Jinfu Wang,et al.  A Cu/Zn/Al/Zr Fibrous Catalyst that is an Improved CO2 Hydrogenation to Methanol Catalyst , 2007 .

[104]  H. Yang,et al.  Direct Synthesis of Hierarchical ZSM-5 Zeolite and Its Performance in Catalyzing Methanol to Gasoline Conversion , 2014 .

[105]  J. Fierro,et al.  Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts , 2013 .

[106]  M. A. Baltanás,et al.  CO2 hydrogenation to methanol and dimethyl ether by Pd–Pd2Ga catalysts supported over Ga2O3 polymorphs , 2015 .

[107]  James Spivey,et al.  A review of dry (CO2) reforming of methane over noble metal catalysts. , 2014, Chemical Society reviews.

[108]  K. Pant,et al.  Catalytic conversion of methanol to gasoline range hydrocarbons , 2004 .

[109]  Freek Kapteijn,et al.  Zeolite based films, membranes and membrane reactors: Progress and prospects , 2006 .

[110]  R. F. Sullivan,et al.  A New Reaction That Occurs in the Hydrocracking of Certain Aromatic Hydrocarbons , 1961 .

[111]  A. Agarwal,et al.  Emission profiling of diesel and gasoline cars at a city traffic junction , 2015 .

[112]  John D. Edwards,et al.  Crude Oil and Alternate Energy Production Forecasts for the Twenty-First Century: The End of the Hydrocarbon Era , 1997 .

[113]  S. Hong,et al.  Synthesis and characterization of ERI-type UZM-12 zeolites and their methanol-to-olefin performance. , 2010, Journal of the American Chemical Society.

[114]  A. Al-Jarallah,et al.  Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes , 1997 .

[115]  J. Klinowski,et al.  Solid-state NMR studies of the shape-selective catalytic conversion of methanol into gasoline on zeolite ZSM-5 , 1990 .

[116]  Harold H. Kung,et al.  Methanol production and use , 1994 .

[117]  U. Olsbye,et al.  Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion , 2003 .

[118]  M. El‐Halwagi,et al.  Process Design and Integration of Shale Gas to Methanol , 2014 .

[119]  Clarence Dayton Chang,et al.  The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts: II. Pressure effects , 1977 .

[120]  Yuhan Sun,et al.  Fluorine-modified Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol , 2014 .

[121]  Kartic C. Khilar,et al.  Pyrolysis characteristics of biomass and biomass components. , 1996 .

[122]  Ahmad Galadima,et al.  n-Alkane hydroconversion over carbided molybdena supported on sulfated zirconia , 2012, Applied Petrochemical Research.

[123]  Majid Taghizadeh,et al.  Investigating the effect of metal oxide additives on the properties of Cu/ZnO/Al2O3 catalysts in methanol synthesis from syngas using factorial experimental design , 2010 .

[124]  K. Lillerud,et al.  Shape‐Selective Conversion of Methanol to Hydrocarbons Over 10‐Ring Unidirectional‐Channel Acidic H‐ZSM‐22 , 2009 .

[125]  K. Lillerud,et al.  The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta , 2009 .

[126]  Suttichai Assabumrungrat,et al.  Catalytic dry reforming of methane over high surface area ceria , 2005 .

[127]  Carlo Pirola,et al.  Biomass gasification using low-temperature solar-driven steam supply , 2015 .

[128]  J. Santamaría,et al.  State-of-the-Art in Zeolite Membrane Reactors , 2004 .

[129]  R. Lapierre,et al.  On the mechanism of methanol conversion to hydrocarbons over HZSM-5 , 1982 .

[130]  Sung-Hwan Han,et al.  Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process) , 1999 .

[131]  P. Costa,et al.  Synthesis strategies of ceria–zirconia doped Ni/SBA-15 catalysts for methane dry reforming , 2015 .

[132]  Yuhan Sun,et al.  Coking and deactivation of a mesoporous Ni–CaO–ZrO2 catalyst in dry reforming of methane: A study under different feeding compositions , 2015 .

[133]  George Crabtree,et al.  The hydrogen economy , 2006, IEEE Engineering Management Review.

[134]  Yuhan Sun,et al.  Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol , 2013 .

[135]  Eun Yeol Lee,et al.  Pyrolysis of microalgae residual biomass derived from Dunaliella tertiolecta after lipid extraction and carbohydrate saccharification , 2015 .

[136]  Weiguo Song,et al.  Synthesis of a Benzenium Ion in a Zeolite with Use of a Catalytic Flow Reactor , 1998 .

[137]  Yuning Li,et al.  Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites: Improved reaction stability , 2008 .

[138]  Paulien M. Herder,et al.  Methanol-Based Industrial Cluster Design: A Study of Design Options and the Design Process , 2004 .

[139]  M. Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and Tungsten , 1987 .

[140]  D. Serrano,et al.  Synthesis strategies in the search for hierarchical zeolites. , 2013, Chemical Society reviews.

[141]  F. Bonino,et al.  Conversion of methanol to hydrocarbons over zeolite H-ZSM-5 : On the origin of the olefinic species , 2007 .

[142]  Peter Hoffmann,et al.  Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet , 2001 .

[143]  Oliver Richard Inderwildi,et al.  The status of conventional world oil reserves—Hype or cause for concern? , 2010 .

[144]  Frerich J. Keil,et al.  Methanol-to-hydrocarbons: process technology , 1999 .

[145]  J. Vantelon,et al.  Gas evolution during isothermal pyrolysis of Timahdit oil shale , 1991 .

[146]  Hai Guo,et al.  Concentrations and sources of non-methane hydrocarbons (NMHCs) from 2005 to 2013 in Hong Kong: A multi-year real-time data analysis , 2015 .

[147]  M. S. Spencer Role of ZnO in methanol synthesis on copper catalysts , 1998 .

[148]  Hua Song,et al.  La–Ni modified S2O82−/ZrO2-Al2O3 catalyst in n-pentane hydroisomerization , 2015 .

[149]  F. B. Shareh,et al.  Metal Promoted Mordenite Catalyst for Methanol Conversion Into Light Olefins , 2014 .

[150]  J. Pérez‐Ramírez,et al.  Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts , 2014, Nature Communications.

[151]  K. Lillerud,et al.  Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. , 2012, Angewandte Chemie.

[152]  A. Faaij,et al.  Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification , 2002 .

[153]  R. Behbahani,et al.  Dehydration of methanol to light olefins upon zeolite/alumina catalysts: Effect of reaction conditions, catalyst support and zeolite modification , 2015 .

[154]  Witchakorn Charusiri,et al.  Conversion of used vegetable oils to liquid fuels and chemicals over HZSM-5, sulfated zirconia and hybrid catalysts , 2006 .

[155]  Jair A. Lizarazo-Adarme,et al.  Syngas conversion to gasoline-range hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 composite catalyst system , 2014 .

[156]  Avelino Corma,et al.  Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures , 2007 .

[157]  T. P. Kobylinski,et al.  METHANOL CARBONYLATION AS AN ALTERNATE ROUTE TO CHEMICALS , 1980 .

[158]  Hui Lou,et al.  Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels , 2004 .

[159]  A. Irandoukht,et al.  Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction , 2015 .

[160]  M. Vannice,et al.  Methanol and methane formation over palladium/rare earth oxide catalysts , 1985 .

[161]  V. Palma,et al.  Monolithic catalysts for methane steam reforming intensification: Experimental and numerical investigations , 2014 .

[162]  Hengyong Xu,et al.  Study on the sulfur tolerance of catalysts for syngas to methanol , 2008 .

[163]  Y. Matsumura,et al.  Low-temperature methanol synthesis catalyzed over ultrafine palladium particles supported on cerium oxide , 2001 .

[164]  B. Weckhuysen,et al.  Shale gas revolution: an opportunity for the production of biobased chemicals? , 2013, Angewandte Chemie.

[165]  Jiaomei Wang,et al.  Theoretical study on the reaction mechanism of CO2 hydrogenation to methanol , 2013 .

[166]  J. Hedlund,et al.  Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size , 2011 .

[167]  Tomoaki Minowa,et al.  Hydrotreatment of Vegetable Oils to Produce Bio-Hydrogenated Diesel and Liquefied Petroleum Gas Fuel over Catalysts Containing Sulfided Ni–Mo and Solid Acids , 2011 .

[168]  T. Baba,et al.  The Conversion of Methanol into Hydrocarbons over Metal Salts of Heteropolyacids , 1982 .

[169]  V. Kirillov,et al.  Low temperature catalytic steam reforming of propane–methane mixture into methane-rich gas: Experiment and macrokinetic modeling , 2014 .

[170]  J. García‐Martínez,et al.  Mesoporous Zeolites: Preparation, Characterization and Applications , 2015 .

[171]  Naděžda Žilková,et al.  Transformation of Vegetable Oils into Hydrocarbons over Mesoporous-Alumina-Supported CoMo Catalysts , 2009 .

[172]  J. F. Haw,et al.  Methylbenzene Chemistry on Zeolite HBeta: Multiple Insights into Methanol-to-Olefin Catalysis , 2002 .

[173]  Janusz A. Kozinski,et al.  Alcohols as alternative fuels: An overview , 2011 .

[174]  J. H. Edwards,et al.  The chemistry of methane reforming with carbon dioxide and its current and potential applications , 1995 .

[175]  S. Al-Khattaf,et al.  Synthesis of stable H-galloaluminosilicate MFI with hierarchical pore architecture by surfactant-mediated base hydrolysis, and their application in propane aromatization , 2012 .