Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus

[1]  V. Paul,et al.  Chemical Mediation of Macroalgal‚ÄìHerbivore Interactions: Ecological and Evolutionary Perspectives , 2001 .

[2]  M. Dethier,et al.  Spatial Patterns in Macroalgal Chemical Defenses , 2001 .

[3]  J. Schultz,et al.  LIMITATIONS OF FOLIN ASSAYS OF FOLIAR PHENOLICS IN ECOLOGICAL STUDIES , 2001, Journal of Chemical Ecology.

[4]  K. Matsui,et al.  A lipid-hydrolysing activity involved in hexenal formation. , 2000, Biochemical Society transactions.

[5]  G. Toth,et al.  INDUCIBLE CHEMICAL RESISTANCE TO HERBIVORY IN THE BROWN SEAWEED ASCOPHYLLUM NODOSUM , 2000 .

[6]  M. Clayton,et al.  The presence of phenolic compounds in isolated cell walls of brown algae , 1999 .

[7]  N. Targett,et al.  MINIREVIEW—PREDICTING THE EFFECTS OF BROWN ALGAL PHLOROTANNINS ON MARINE HERBIVORES IN TROPICAL AND TEMPERATE OCEANS , 1998 .

[8]  H. Pavia,et al.  Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum , 1997 .

[9]  M. Hay,et al.  Are Tropical Plants Better Defended? Palatability and Defenses of Temperate vs. Tropical Seaweeds , 1996 .

[10]  G. Cronin,et al.  Susceptibility to Herbivores Depends on Recent History of both the Plant and Animal , 1996 .

[11]  E. Martínez Micropopulation differentiation in phenol content and susceptibility toherbivory in the Chilean kelp Lessonia nigrescens(Phaeophyta, Laminariales) , 1996 .

[12]  J. Estes,et al.  Evolutionary consequences of food chain length in kelp forest communities. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  T. Targett,et al.  Tropical marine herbivore assimilation of phenolic-rich plants , 1995, Oecologia.

[14]  W. Fenical,et al.  Synergisms in Plant Defenses against Herbivores: Interactions of Chemistry, Calcification, and Plant Quality , 1994 .

[15]  J. Emmett Duffy,et al.  Herbivore Resistance to Seaweed Chemical Defense: The Roles of Mobility and Predation Risk , 1994 .

[16]  W R Rice,et al.  'Heads I win, tails you lose': testing directional alternative hypotheses in ecological and evolutionary research. , 1994, Trends in ecology & evolution.

[17]  Kanzo Sakata,et al.  20-hydroxy-4,8,13,17-tetramethyl-4,8,12,16-eicosatetraenoic acid, a new feeding deterrent against herbivorous gastropods, from the subtropical brown alga Turbinaria ornata , 1994 .

[18]  J. Yates,et al.  Effects of Nutrient Availability and Herbivory on Polyphenolics in the Seaweed Fucus Versiculosus , 1993 .

[19]  N. Targett,et al.  Role of Polyphenolic Molecular Size in Reduction of Assimilation Efficiency in Xiphister Mucosus , 1993 .

[20]  W. Woelkerling,et al.  Seaweeds of the Southeastern United States: Cape Hatteras to Cape Canaveral , 1993 .

[21]  D. Herms,et al.  The Dilemma of Plants: To Grow or Defend , 1992, The Quarterly Review of Biology.

[22]  J. Emmett Duffy,et al.  Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes , 1992, Oecologia.

[23]  J. Estes,et al.  Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum Ruprecht (Phaeophyta: Laminariales) on feeding rate and growth in the red abalone Haliotus rufescens Swainson , 1992 .

[24]  P. Steinberg,et al.  Tolerance of Marine Invertebrate Herbivores to Brown Algal Phlorotannins in Temperate Australasia , 1992 .

[25]  A. Chapman,et al.  Feeding preferences of gammarid amphipods among four species ofFucus , 1991 .

[26]  R. Birdsey,et al.  Lack of avoidance of phenolic-rich brown algae by tropical herbivorous fishes , 1991 .

[27]  V. Paul,et al.  The biogeography of polyphenolic compounds in marine macroalgae: temperate brown algal defenses deter feeding by tropical herbivorous fishes , 1990, Oecologia.

[28]  Thomas P. Clausen,et al.  Ecological implications of condensed tannin structure: A case study , 1990, Journal of Chemical Ecology.

[29]  Motomasa Kobayashi,et al.  Heterosigma-glycolipids I and II, two new galactolipids containing octadecatetraenoyl and eicosapentaenoyl residues, from a raphidophyte dinoflagellate Heterosigma sp. , 1989 .

[30]  P. Steinberg Effects of quantitative and qualitative variation in phenolic compounds on feeding in three species of marine invertebrate herbivores , 1988 .

[31]  K. L. Alstyne HERBIVORE GRAZING INCREASES POLYPHENOLIC DEFENSES IN THE INTERTIDAL BROWN ALGA FUCUS DISTICHUS , 1988 .

[32]  P. Renaud,et al.  Large mobile versus small sedentary herbivores and their resistance to seaweed chemical defenses , 1988, Oecologia.

[33]  J. Duffy,et al.  Chemical Defense Against Different Marine Herbivores: Are Amphipods Insect Equivalents? , 1987, Ecology.

[34]  J. Lawton,et al.  INSECTS ON PLANTS. COMMUNITY PATTERNS AND MECHANISMS. , 1987 .

[35]  M. Hay,et al.  Food preference and chemotaxis in the sea urchin Arbaciapunctulata (Lamarck) Philippi , 1986 .

[36]  F. Stuart Chapin,et al.  Resource Availability and Plant Antiherbivore Defense , 1985, Science.

[37]  P. Steinberg FEEDING PREFERENCES OF TEGULA FUNEBRALIS AND CHEMICAL DEFENSES OF MARINE BROWN ALGAE , 1985 .

[38]  M. Ragan,et al.  The high molecular weight polyphloroglucinols of the marine brown alga Fucusvesiculosus L. 1H and 13C nuclear magnetic resonance spectroscopy , 1985 .

[39]  F. Stuart Chapin,et al.  Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory , 1983 .

[40]  W. Zucker Tannins: Does Structure Determine Function? An Ecological Perspective , 1983, The American Naturalist.

[41]  D. Janzen,et al.  Herbivores: Their Interaction With Secondary Plant Metabolites , 1982 .

[42]  O. Mcconnell,et al.  Polyphenols in brown algaeFucus vesiculosus andAscophyllum nodosum: Chemical defenses against the marine herbivorous snail,Littorina littorea , 1981, Journal of Chemical Ecology.

[43]  E. Martínez Micropopulation differentiation in phenol content and susceptibility to herbivory in the Chilean kelp Lessonia nigrescenss (Phaeophyta, Laminariales) , 2004, Hydrobiologia.

[44]  L. Ohlsson Digestion and absorption of galactolipids , 2000 .

[45]  Michael S. Deal,et al.  Bioassays with Marine and Freshwater Macroorganisms , 1998 .

[46]  J. Markham,et al.  Size-specific concentrations of phlorotannins (anti-herbivore compounds) in three species of Fucus , 1990 .

[47]  K. Sakata Feeding Attractants and Stimulants for Marine Gastropods , 1989 .

[48]  W. Fenical,et al.  Marine Plant-Herbivore Interactions: The Ecology of Chemical Defense , 1988 .

[49]  M. Ragan,et al.  Phlorotannins, brown algal polyphenols , 1986 .

[50]  M. Ragan The high molecular weight polyphloroglucinols of the marine brown alga Fucusvesiculosus L.: degradative analysis , 1985 .

[51]  K. Glombitza,et al.  Phlorotannins of phaeophycea Laminaria ochroleuca , 1980 .

[52]  M. Ragan,et al.  Physodes and the phenolic compounds of brown algae. Isolation and characterization of phloroglucinol polymers from Fucus vesiculosus (L.) , 1976, Canadian journal of biochemistry.

[53]  P. Feeny,et al.  Plant apparency and chemical defense , 1976 .

[54]  R. Cates,et al.  TOWARD A GENERAL THEORY OF PLANT. ANTIHERBIVORE CHEMISTRY , 1976 .

[55]  K. Glombitza,et al.  Polyhydroxyoligophenyle und phenyläther aus Bifurcaria bifurcata , 1976 .