A reduced and limited‐memory preconditioned approach for the 4D‐Var data‐assimilation problem

We recall a theoretical analysis of the equivalence between the Kalman filter and the four-dimensional variational (4D-Var) approach to solve data-assimilation problems. This result is then extended to cover the comparison of the singular evolutive extended Kalman (SEEK) filter with a reduced variant of the 4D-Var algorithm. We next concentrate on the solution of the 4D-Var, which is usually computed with a (truncated) Gauss–Newton algorithm using a preconditioned conjugate-gradient-like (CG) method. Motivated by the equivalence of the above-mentioned algorithms, we explore techniques used in the SEEK filter and based on empirical orthogonal functions (EOFs) as an attempt to accelerate the Gauss–Newton method further. This leads to the development of an appropriate starting point for the CG method, together with that of a powerful limited-memory preconditioner (LMP), as shown by preliminary numerical experiments performed on a shallow-water model. Copyright © 2011 Royal Meteorological Society

[1]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[2]  Eric Blayo,et al.  Reduced‐order 4D‐Var: A preconditioner for the Incremental 4D‐Var data assimilation method , 2006, 0709.2814.

[3]  Serge Gratton,et al.  Approximate Gauss-Newton Methods for Nonlinear Least Squares Problems , 2007, SIAM J. Optim..

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  L. Leung,et al.  Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE, Darwin 2006) , 2009 .

[6]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[7]  R. Todling,et al.  Suboptimal Schemes for Atmospheric Data Assimilation Based on the Kalman Filter , 1994 .

[8]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[9]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[10]  Zhijin Li,et al.  Optimality of 4D-Var and its relationship with the Kalman lter and Kalman smoother , 1999 .

[11]  Florence Rabier,et al.  Overview of global data assimilation developments in numerical weather‐prediction centres , 2005 .

[12]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[13]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[14]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[15]  Dinh-Tuan Pham,et al.  Evolution of the reduced state space and data assimilation schemes based on the Kalman filter , 2003 .

[16]  Jianping Li,et al.  A four-dimensional scheme based on singular value decomposition (4DSVD) for chaotic-attractor-theory-oriented data assimilation , 2009 .

[17]  Eric Blayo,et al.  A reduced-order strategy for 4D-Var data assimilation , 2005, 0709.2825.

[18]  Nancy Nichols,et al.  Using Model Reduction Methods within Incremental Four-Dimensional Variational Data Assimilation , 2008 .

[19]  Philippe Courtier,et al.  Four‐Dimensional Assimilation In the Presence of Baroclinic Instability , 1992 .

[20]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[21]  G. Strang,et al.  Linear Algebra, Geodesy, and GPS , 1997 .

[22]  Serge Gratton,et al.  On A Class of Limited Memory Preconditioners For Large Scale Linear Systems With Multiple Right-Hand Sides , 2011, SIAM J. Optim..

[23]  G. Panteleev,et al.  A Method of Successive Corrections of the Control Subspace in the Reduced-Order Variational Data Assimilation* , 2009 .

[24]  Nancy Nichols,et al.  A comparison of two methods for developing the linearization of a shallow-water model , 2003 .

[25]  Nancy Nichols,et al.  Approximate iterative methods for variational data assimilation , 2005 .

[26]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[27]  Serge Gratton,et al.  Limited‐memory preconditioners, with application to incremental four‐dimensional variational data assimilation , 2008 .

[28]  Ionel M. Navon,et al.  Efficiency of a POD-based reduced second-order adjoint model in 4 D-Var data assimilation , 2006 .

[29]  Jacques Verron,et al.  A singular evolutive extended Kalman filter for data assimilation in oceanography , 1998 .

[30]  Eric Blayo,et al.  A Consistent Hybrid Variational-Smoothing Data Assimilation Method: Application to a Simple Shallow-Water Model of the Turbulent Midlatitude Ocean , 2011 .

[31]  Jean-Michel Brankart,et al.  A Reduced-Order Kalman Filter for Data Assimilation in Physical Oceanography , 2007, SIAM Rev..

[32]  Ionel M. Navon,et al.  Optimality of variational data assimilation and its relationship with the Kalman filter and smoother , 2001 .

[33]  F. W. Cathey,et al.  The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..

[34]  Sophie Durbiano,et al.  Vecteurs caractéristiques de modèles océaniques pour la réduction d'ordre en assimilation de données , 2001 .

[35]  Jérôme Vialard,et al.  Three- and Four-Dimensional Variational Assimilation with a General Circulation Model of the Tropical Pacific Ocean. Part I: Formulation, Internal Diagnostics, and Consistency Checks , 2003 .

[36]  A. Bunse-Gerstner,et al.  The University of Reading Using model reduction methods within incremental 4D-Var , 2006 .

[37]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[38]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .