Lactic acid bacteria: classification and physiology.

Lactic acid bacteria (LAB) constitute a group of gram-positive bacteria united by a constellation of morphological, metabolic, and physiological characteristics. The general description of the bacteria included in the group is gram-positive, nonsporing, nonrespiring cocci or rods, which produce lactic acid as the major end product during the fermentation of carbohydrates. The LAB term is intimately associated with bacteria involved in food and feed fermentation, including related bacteria normally associated with the (healthy) mucosal surfaces of humans and animals. The boundaries of the group have been subject to some controversy, but historically the genera Lactobacillus, Leuconostoc, Pediococcus, and Streptococcus form the core of the group. Taxonomic revisions of these genera and the description of new genera mean that LAB could, in their broad physiological definition, comprise around 20 genera. However, from a practical, food-technology point of view, the following genera are considered the principal LAB: Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus, and Weissella. The genus Bifidobacterium, often considered in the same context as the genuine lactic acid bacteria and sharing some of their typical features, is phylogenetically unrelated and has a unique mode of sugar fermentation. The classification of lactic acid bacteria into different genera is largely based on morphology, mode of glucose fermentation, growth at different temperatures, configuration of the lactic acid produced, ability to grow at high salt concentrations, and acid or alkaline tolerance. Chemotaxonomic markers such as fatty acid composition and constituents of the cell wall are also used in classification. In addition, the present taxonomy relies partly on true phylogenetic relationships,

[1]  M. Collins,et al.  Phylogenetic analysis of some Aerococcus-like organisms from clinical sources: description of Helcococcus kunzii gen. nov., sp. nov. , 1993, International journal of systematic bacteriology.

[2]  K. Schleifer,et al.  Peptidoglycan Types of Bacterial Cell Walls and Their Taxonomic Implications , 1973, Bacteriological reviews.

[3]  K. Schleifer,et al.  Molecular and Chemotaxonomic Approaches to the Classification of Streptococci, Enterococci and Lactococci: A Review , 1987 .

[4]  L. Axelsson,et al.  Anaerobic l‐lactate degradation by Lactobacillus plantarum , 1990 .

[5]  R. Whittenbury HYDROGEN PEROXIDE FORMATION AND CATALASE ACTIVITY IN THE LACTIC ACID BACTERIA. , 1964, Journal of general microbiology.

[6]  M. Rimpiläinen,et al.  The F1-ATPase from Streptococcus cremoris: isolation, purification and partial characterization. , 1988, The International journal of biochemistry.

[7]  U. Hansen,et al.  Energy recycling by lactate efflux in growing and nongrowing cells of Streptococcus cremoris , 1985, Journal of bacteriology.

[8]  T. Ritchey,et al.  Distribution of cytochrome-like respiration in streptococci. , 1976, Journal of general microbiology.

[9]  J. Russell,et al.  Electrogenic L-malate transport by Lactobacillus plantarum: a basis for energy derivation from malolactic fermentation , 1991, Journal of bacteriology.

[10]  H. Morris,et al.  Carbohydrate Metabolism by Streptococcus thermophilus : A Review. , 1987, Journal of food protection.

[11]  V. Crow,et al.  Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis , 1984, Applied and environmental microbiology.

[12]  V. Marshall Lactic acid bacteria: starters for flavour , 1987 .

[13]  M. Brustolon,et al.  Distribution of the phosphoenolpyruvate:glucose phosphotransferase system in fermentative bacteria , 1979, Journal of bacteriology.

[14]  P. Vandemark,et al.  FRUCTOSE DISSIMILATION BY LACTOBACILLUS BREVIS , 1960, Journal of bacteriology.

[15]  B. Poolman BIOCHEMISTRY AND MOLECULAR-BIOLOGY OF GALACTOSIDE TRANSPORT AND METABOLISM IN LACTIC-ACID BACTERIA , 1993 .

[16]  M. Rogosa,et al.  A MEDIUM FOR THE CULTIVATION OF LACTOBACILLI , 1960 .

[17]  W. Hammes,et al.  Lactobacillus suebicus sp. nov., an Obligately Heterofermentative Lactobacillus Species Isolated from Fruit Mashes , 1989 .

[18]  R. Harvey,et al.  ROLE OF CITRITASE IN ACETOIN FORMATION BY STREPTOCOCCUS DIACETILACTIS AND LEUCONOSTOC CITROVORUM , 1961, Journal of bacteriology.

[19]  K. Schleifer,et al.  Molecular systematics of prokaryotes. , 1983, Annual review of microbiology.

[20]  G. Venema,et al.  Cloning, sequencing, and expression in Escherichia coli of lcnB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4-6 , 1992, Applied and environmental microbiology.

[21]  K. Schleifer,et al.  Species Specific Oligonucleotide Probe for the Identification of Streptococcus thermophilus , 1992 .

[22]  J. Cerning Exocellular polysaccharides produced by lactic acid bacteria. , 1990, FEMS microbiology reviews.

[23]  P. Renault,et al.  Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy , 1991, Journal of bacteriology.

[24]  J. W. Neal,et al.  Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis , 1994, Journal of bacteriology.

[25]  J. London Uncommon pathways of metabolism among lactic acid bacteria. , 1990, FEMS microbiology reviews.

[26]  R. Lancefield A SEROLOGICAL DIFFERENTIATION OF HUMAN AND OTHER GROUPS OF HEMOLYTIC STREPTOCOCCI , 1933, The Journal of experimental medicine.

[27]  F. L. Davies,et al.  Conjugal transfer of the drug resistance plasmid pAMβ in the lactic streptococci , 1980 .

[28]  J. Thompson,et al.  Catabolite Inhibition and Sequential Metabolism of Sugars by Streptococcus lactis , 1978, Journal of bacteriology.

[29]  K. Schleifer Recent changes in the taxonomy of lactic acid bacteria , 1987 .

[30]  M. Saier Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. , 1977, Bacteriological reviews.

[31]  R. F. Mcfeeters,et al.  Utilization of electron acceptors for anaerobic mannitol metabolism by Lactobacillus plantarum. Compounds which serve as electron acceptors , 1986 .

[32]  H. P. Fleming,et al.  Microbial ecology of fermenting plant materials , 1987 .

[33]  W. Hammes,et al.  Non-heme catalase activity of lactic acid bacteria , 1994 .

[34]  J. Hugenholtz,et al.  Growth and Energy Generation by Lactococcus lactis subsp. lactis biovar diacetylactis during Citrate Metabolism , 1993, Applied and environmental microbiology.

[35]  S. Ahrné,et al.  Restriction Endonuclease Patterns and Multivariate Analysis as a Classification Tool for Lactobacillus spp. , 1990 .

[36]  F. Griffith The Significance of Pneumococcal Types , 1928, Journal of Hygiene.

[37]  T. Yamada,et al.  Purification of pyruvate formate-lyase from Streptococcus mutans and its regulatory properties , 1982, Journal of bacteriology.

[38]  H. Morris,et al.  Lactate metabolism by pediococci isolated from cheese , 1985, Applied and environmental microbiology.

[39]  B. Poolman,et al.  Energy transduction in lactic acid bacteria. , 1993, FEMS microbiology reviews.

[40]  G. Gottschalk,et al.  Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate. , 1980, Journal of general microbiology.

[41]  L. Vuyst,et al.  Bacteriocins of Lactic Acid Bacteria , 1994 .

[42]  K. Schleifer,et al.  Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. , 1984 .

[43]  K. Uchida,et al.  Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate:mannose phosphotransferase system in Pediococcus halophilus , 1989, Journal of bacteriology.

[44]  M. Teuber,et al.  Potential of Lactic Streptococci to Produce Bacteriocin , 1983, Applied and environmental microbiology.

[45]  K. Entian,et al.  Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product , 1989, Journal of bacteriology.

[46]  K. Schleifer,et al.  Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. , 1994, International journal of systematic bacteriology.

[47]  J. Tournut Les probiotiques en élevage : applications , 1989 .

[48]  L. Axelsson,et al.  Utilization of Glycerol as a Hydrogen Acceptor by Lactobacillus reuteri: Purification of 1,3-Propanediol:NAD+ Oxidoreductase , 1990, Applied and environmental microbiology.

[49]  J. Houte,et al.  The presence of dextran-forming bacteria, resembling streptococcus bovis and streptococcus sanguis, in human dental plaque , 1967 .

[50]  A. Chopin,et al.  Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. , 1988, Biochimie.

[51]  S. Condon,et al.  Responses of lactic acid bacteria to oxygen , 1987 .

[52]  P. Renault,et al.  Role of malolactic fermentation in lactic acid bacteria. , 1988, Biochimie.

[53]  M. Teuber Strategies for genetic modification of lactococci. , 1990 .

[54]  E I Garvie,et al.  Bacterial lactate dehydrogenases. , 1980, Microbiological reviews.

[55]  E. I. Garvie Leuconostoc oenos sp.nov. , 1967, Journal of general microbiology.

[56]  M. Saier,et al.  The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation. , 1988, Critical reviews in microbiology.

[57]  A. H. Stouthamer,et al.  Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. , 1970, Journal of general microbiology.

[58]  D. Ellwood,et al.  Change from Homo- to Heterolactic Fermentation by Streptococcus lactis Resulting from Glucose Limitation in Anaerobic Chemostat Cultures , 1979, Journal of bacteriology.

[59]  M. C. Manca de Nadra,et al.  Arginine dihydrolase pathway in Lactobacillus buchneri: a review. , 1988, Biochimie.

[60]  P. R. Elliker,et al.  An Agar Culture Medium for Lactic Acid Streptococci and Lactobacilli , 1956 .

[61]  A. Driessen,et al.  Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis , 1987, Journal of bacteriology.

[62]  M. Gasson In vivo genetic systems in lactic acid bacteria. , 1990, FEMS microbiology reviews.

[63]  M. Teuber,et al.  Structural features determining the antibiotic potencies of natural and synthetic hop bitter resins, their precursors and derivatives. , 1975, Canadian Journal of Microbiology (print).

[64]  J. Hugenholtz,et al.  Increase of molar growth yield of Streptococcus cremoris for lactose as a consequence of lactate consumption by Pseudomonas stutzeri in mixed culture , 1980 .

[65]  M. Collins,et al.  Specific and intraspecific molecular typing of lactococci based on polymorphism of DNA encoding rRNA. , 1991, The Journal of applied bacteriology.

[66]  M. Collins,et al.  Phenotypic and phylogenetic characterization of some Gemella-like organisms from human infections: description of Dolosigranulum pigrum gen. nov., sp. nov. , 1993, The Journal of applied bacteriology.

[67]  C. Higgins,et al.  ABC transporters: from microorganisms to man. , 1992, Annual review of cell biology.

[68]  W. Dobrogosz,et al.  Purification and Characterization of Glycerol Dehydratase from Lactobacillus reuteri , 1990, Applied and environmental microbiology.

[69]  K. Schleifer,et al.  Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. , 1985 .

[70]  D. V. Berg,et al.  Isolation, screening and identification of lactic acid bacteria from traditional food fermentation processes and culture collections , 1993 .

[71]  W. D. de Vos,et al.  Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes , 1991, Applied and environmental microbiology.

[72]  V. Crow,et al.  Arginine metabolism in lactic streptococci , 1982, Journal of bacteriology.

[73]  M. Rogosa,et al.  A SELECTIVE MEDIUM FOR THE ISOLATION AND ENUMERATION OF ORAL AND FECAL LACTOBACILLI , 1951, Journal of bacteriology.

[74]  M. Collins,et al.  16S ribosomal ribonucleic acid sequence analyses of lactococci and related taxa. Description of Vagococcus fluvialis gen. nov., sp. nov. , 1989, The Journal of applied bacteriology.

[75]  T. Gleeson,et al.  Experience of the use of probiotics for Salmonellae control in poultry , 1992 .

[76]  Helmut Schütz,et al.  Anaerobic Reduction of Glycerol to Propanediol-1.3 by Lactobacillus brevis and Lactobacillus buchneri , 1984 .

[77]  L. Axelsson,et al.  In VitroStudies on Reuterin Synthesis byLactobacillus reuteri , 1989 .

[78]  W. Bockelmann,et al.  Molecular cloning and sequence analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris , 1991, Applied and environmental microbiology.

[79]  A. Abdelal Arginine catabolism by microorganisms. , 1979, Annual review of microbiology.

[80]  C. Woese,et al.  Phylogenetic Structure of the “Leuconostocs”: An Interesting Case of a Rapidly Evolving Organism , 1989 .

[81]  P. Maloney Microbes and membrane biology. , 1990, FEMS microbiology reviews.

[82]  M. Collins,et al.  Intrageneric relationships of Enterococci as determined by reverse transcriptase sequencing of small-subunit rRNA. , 1991, Research in microbiology.

[83]  B. Poolman,et al.  Regulation of the glutamate-glutamine transport system by intracellular pH in Streptococcus lactis , 1987, Journal of bacteriology.

[84]  J. Welsh,et al.  Fingerprinting genomes using PCR with arbitrary primers. , 1990, Nucleic acids research.

[85]  P. Schmitt,et al.  Effect of Acetaldehyde on Growth, Substrates, and Products by Leuconostoc mesenteroides ssp cremoris , 1990 .

[86]  B. Hahn-Hägerdal,et al.  β-Glucose-1-Phosphate, a Possible Mediator for Polysaccharide Formation in Maltose-Assimilating Lactococcus lactis , 1989, Applied and environmental microbiology.

[87]  J. Stamer,et al.  Growth Response of Lactobacillus brevis to Aeration and Organic Catalysts. , 1967, Applied microbiology.

[88]  A. Holck,et al.  Identification of Carnobacterium spp. and Leuconostoc spp. in meat by genus‐specific 16S rRNA probes , 1994, Letters in applied microbiology.

[89]  N. Olson The impact of lactic acid bacteria on cheese flavor , 1990 .

[90]  R. W. Stone,et al.  OXIDATIVE METABOLISM IN PEDIOCOCCUS PENTOSACEUS I. , , 1962, Journal of bacteriology.

[91]  M. Collins,et al.  Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups. , 1993, The Journal of applied bacteriology.

[92]  M. Teuber,et al.  Construction of a Species-Specific DNA Oligonucleotide Probe for Streptococcus thermophilus on the Basis of a Chromosomal lacZ Gene , 1992 .

[93]  J. Smart,et al.  Effect of Oxygen on Lactose Metabolism in Lactic Streptococci , 1987, Applied and environmental microbiology.

[94]  D. Bissett,et al.  Lactose and d-Galactose Metabolism in Group N Streptococci: Presence of Enzymes for Both the d-Galactose 1-Phosphate and d-Tagatose 6-Phosphate Pathways1 , 1974, Journal of bacteriology.

[95]  M. Saier,et al.  Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. , 1994, The Journal of biological chemistry.

[96]  R. G. Kroll,et al.  Use of the polymerase chain reaction and oligonucleotide probes for the rapid detection and identification of Carnobacterium species from meat. , 1992, The Journal of applied bacteriology.

[97]  J. Lupski,et al.  Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. , 1991, Nucleic acids research.

[98]  J. Thompson Lactic acid bacteria: model systems for in vivo studies of sugar transport and metabolism in gram-positive organisms. , 1988, Biochimie.

[99]  T. Cogan Co‐metabolism of citrate and glucose by Leuconostoc spp.: effects on growth, substrates and products , 1987 .

[100]  M. Collins,et al.  Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. , 1993, The Journal of applied bacteriology.

[101]  E. B. Fred,et al.  FERMENTATION OF FRUCTOSE BY LACTOBACILLUS PENTOACETICUS, N. SP , 1920 .

[102]  J. Hugenholtz Citrate metabolism in lactic acid bacteria , 1993 .

[103]  W. Holzapfel,et al.  Glucose metabolism by Lactobacillus divergens. , 1988, Journal of general microbiology.

[104]  R. Hutkins,et al.  Lactose Uptake Driven by Galactose Efflux in Streptococcus thermophilus: Evidence for a Galactose-Lactose Antiporter , 1991, Applied and environmental microbiology.

[105]  M. Teuber,et al.  Identification, cloning and sequencing of the replication region of Lactococcus lactis ssp. lactis biovar. diacetylactis Bu2 citrate plasmid pSL2. , 1991, FEMS microbiology letters.

[106]  J. Thompson Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo , 1979, Journal of bacteriology.

[107]  E. Stackebrandt,et al.  Development of Diagnostic Oligonucleotide Probes for Four Lactobacillus Species Occurring in the Intestinal Tract , 1992 .

[108]  S. Condon,et al.  Active Role of Oxygen and NADH Oxidase in Growth and Energy Metabolism of Leuconostoc , 1986 .

[109]  P. Maloney,et al.  A protonmotive force drives ATP synthesis in bacteria. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[110]  D. G. Bryan-Jones,et al.  Haematin-dependent oxidative phosphorylation in Streptococcus faecalis. , 1969, Journal of general microbiology.

[111]  H. Neve,et al.  Conjugal transfer and characterization of bacteriocin plasmids in group N (lactic acid) streptococci , 1984, Journal of bacteriology.

[112]  I. Booth,et al.  Regulation of cytoplasmic pH in bacteria. , 1985, Microbiological reviews.

[113]  B. Poolman,et al.  Kinetic properties of a phosphate-bond-driven glutamate-glutamine transport system in Streptococcus lactis and Streptococcus cremoris , 1987, Journal of bacteriology.

[114]  K. Schleifer,et al.  Identification and classification of Lactobacillus acidophilus, L. gasseri and L. johnsonii strains by SDS-PAGE and rRNA-targeted oligonucleotide probe hybridization. , 1993, Journal of general microbiology.

[115]  J. Thompson Regulation of sugar transport and metabolism in lactic acid bacteria , 1987 .

[116]  J. Kok,et al.  Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4 , 1992, Applied and environmental microbiology.

[117]  R. Talon,et al.  A simplified key for identifying homofermentative Lactobacillus and Carnobacterium spp. from meat. , 1991, The Journal of applied bacteriology.

[118]  V. Skulachev,et al.  The F1-type ATPase in anaerobic Lactobacillus casei. , 1990, Biochimica et biophysica acta.

[119]  C. Kaneuchi,et al.  Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains , 1988, Applied and environmental microbiology.

[120]  P. Fox,et al.  Glycolysis and related reactions during cheese manufacture and ripening. , 1990, Critical reviews in food science and nutrition.

[121]  E. A. Zottola,et al.  Loss of lactose metabolism in lactic streptococci. , 1972, Applied microbiology.

[122]  H. Kobayashi A proton-translocating ATPase regulates pH of the bacterial cytoplasm. , 1985, The Journal of biological chemistry.

[123]  J. Kok Genetics of the proteolytic system of lactic acid bacteria. , 1990, FEMS microbiology reviews.

[124]  M. A. Foster,et al.  Sugar-glycerol cofermentations in lactobacilli: the fate of lactate , 1992, Journal of bacteriology.

[125]  M. Collins,et al.  Phylogenetic analysis of some leuconostocs and related organisms as determined from large-subunit rRNA gene sequences: assessment of congruence of small- and large-subunit rRNA derived trees. , 1993, The Journal of applied bacteriology.

[126]  A. Driessen,et al.  Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[127]  M. Daeschel A pH Control System Based on Malate Decarboxylation for the Cultivation of Lactic Acid Bacteria , 1988, Applied and environmental microbiology.

[128]  M. Collins,et al.  16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmoninarum sp. nov. , 1990, International journal of systematic bacteriology.

[129]  K. Livak,et al.  DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. , 1990, Nucleic acids research.

[130]  B. Poolman,et al.  Casein utilization by lactococci , 1991, Applied and environmental microbiology.

[131]  M. Futai,et al.  Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. , 1983, Microbiological reviews.

[132]  V. Crow,et al.  Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation , 1980, Journal of bacteriology.

[133]  M. Teuber,et al.  Distribution of the IS elements ISS1 and IS904 in lactococci. , 1991, FEMS microbiology letters.

[134]  J. Ruiz-Sainz,et al.  Studies of symbiotic plasmids in Rhizobium trifolii and fast‐growing bacteria that nodulate soybeans , 1986 .

[135]  S. Matsuzaki,et al.  Existence of Phosphoenolpyruvate: Carbohydrate Phosphotransferase Systems in Lactobacillus fermentum, an Obligate Heterofermenter , 1992, Microbiology and immunology.

[136]  A. Driessen,et al.  Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis , 1989, Journal of bacteriology.

[137]  W. Sandine,et al.  Lactose-hydrolyzing enzymes of Lactobacillus species. , 1972, Applied microbiology.

[138]  R. F. Mcfeeters,et al.  Utilization of electron acceptors for anaerobic metabolism by Lactobacillus plantarum. Enzymes and intermediates in the utilization of citrate , 1986 .

[139]  K. Schleifer,et al.  Identification of lactococci and enterococci by colony hybridization with 23S rRNA-targeted oligonucleotide probes , 1990, Applied and environmental microbiology.

[140]  T. D. Thomas,et al.  Carbohydrate Fermentation by Streptococcus cremoris and Streptococcus lactis Growing in Agar Gels , 1981, Applied and environmental microbiology.

[141]  M. Collins,et al.  DNA base composition, DNA-DNA homology and long-chain fatty acid studies on streptococcus thermophilus and Streptococcus salivarius. , 1984, Journal of general microbiology.

[142]  A. Holck,et al.  Cloning, sequencing and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei subsp. paracasei NCDO 151. , 1992, Journal of general microbiology.

[143]  J. Reizer,et al.  Regulation of beta-galactoside transport and accumulation in heterofermentative lactic acid bacteria , 1987, Journal of bacteriology.

[144]  F. Haesebrouck,et al.  Characterization and identification of Vagococcus fluvialis strains isolated from domestic animals. , 1994, The Journal of applied bacteriology.

[145]  W. Sandine,et al.  Improved Medium for Lactic Streptococci and Their Bacteriophages , 1975, Applied microbiology.

[146]  A. Hillier,et al.  Pyruvate dehydrogenase activity in group N streptococci. , 1980, Australian journal of biological sciences.

[147]  T. Cogan,et al.  Effects of pH and Sugar on Acetoin Production from Citrate by Leuconostoc lactis , 1981, Applied and environmental microbiology.

[148]  A. Driessen,et al.  Bioenergetics and solute transport in lactococci. , 1989, Critical reviews in microbiology.

[149]  A. Chopin Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. , 1993, FEMS microbiology reviews.

[150]  W. Hammes,et al.  Heme-Dependent Cytochrome Formation in Lactobacillus maltaromicus , 1994 .

[151]  W. Hammes,et al.  Heme-dependent catalase activity of lactobacilli. , 1991, International journal of food microbiology.

[152]  T. Montville,et al.  Enzyme Activities Affecting End Product Distribution by Lactobacillus plantarum in Response to Changes in pH and O2 , 1990, Applied and environmental microbiology.

[153]  T. Cogan,et al.  Citric acid metabolism in hetero- and homofermentative lactic acid bacteria , 1976, Applied and environmental microbiology.

[154]  R. W. Bentley,et al.  Intrageneric structure of Streptococcus based on comparative analysis of small-subunit rRNA sequences. , 1991, International journal of systematic bacteriology.

[155]  V. Crow,et al.  Selection of Galactose-Fermenting Streptococcus thermophilus in Lactose-Limited Chemostat Cultures , 1984, Applied and environmental microbiology.

[156]  E. R. Kashket Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance , 1987 .

[157]  M. Collins,et al.  Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA , 1991 .

[158]  B. Mollet,et al.  DNA probes for the detection of Lactobacillus helveticus. , 1990 .

[159]  W. Dobrogosz,et al.  Antagonistic activities of lactic acid bacteria in food and feed fermentations. , 1990, FEMS microbiology reviews.

[160]  H. P. Fleming,et al.  Acid Tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum , 1990, Applied and environmental microbiology.

[161]  T. Henick-Kling,et al.  Chemiosmotic energy from malolactic fermentation , 1989, Journal of bacteriology.

[162]  L. Axelsson,et al.  Characterization and DNA homology of Lactobacillus strains isolated from pig intestine. , 1987, The Journal of applied bacteriology.

[163]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[164]  W. Konings,et al.  Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products , 1979 .

[165]  B. Poolman,et al.  Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport , 1988, Journal of bacteriology.

[166]  J. Cogan,et al.  Impact of aeration on the metabolic end‐products formed from glucose and galactose by Streptococcus lactis , 1989 .

[167]  A. Hillier,et al.  Transport and Metabolism of Lactose, Glucose, and Galactose in Homofermentative Lactobacilli , 1986, Applied and environmental microbiology.

[168]  W. Hammes,et al.  Lactic acid bacteria in meat fermentation , 1990 .

[169]  M. Collins,et al.  Genus‐ and species‐specific oligonucleotide probes derived from 16S rRNA for the identification of vagococci , 1992, Letters in applied microbiology.

[170]  R. F. Mcfeeters,et al.  Utilization of electron acceptors for anaerobic mannitol metabolismn by Lactobacillus plantarum. Reduction of alpha-keto acids , 1986 .

[171]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[172]  E. Stackebrandt,et al.  Molecular taxonomy and phylogenetic position of lactic acid bacteria. , 1988, Biochimie.

[173]  C. Woese,et al.  A Phylogenetic Analysis of Lactobacilli, Pediococcus pentosaceus and Leuconostoc mesenteroides. , 1983, Systematic and applied microbiology.

[174]  M. Uhlén,et al.  Restriction Fragment Length Polymorphism of Lactobacillus reuteri and Lactobacillus fermentum, Originating from Intestinal Mucosa, Based on 16S rRNA Genes , 1994 .

[175]  A. Jarvis,et al.  Deoxyribonucleic Acid Homology Among Lactic Streptococci , 1981, Applied and environmental microbiology.

[176]  G. Venema,et al.  Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis , 1993, Journal of bacteriology.

[177]  W. Dobrogosz,et al.  Transport of β-Galactosides in Lactobacillus plantarum NC2 , 1990 .

[178]  C. Tseng,et al.  Bioenergetic consequences of catabolic shifts by Lactobacillus plantarum in response to shifts in environmental oxygen and pH in chemostat cultures , 1991, Journal of bacteriology.

[179]  K. Schleifer,et al.  23S rRNA-targeted Oligonucleotide Probes for the Rapid Identification of Meat Lactobacilli , 1991 .

[180]  P. Vandemark,et al.  Respiration of Lactobacillus casei. , 1968, Canadian journal of microbiology.

[181]  W. Sandine,et al.  Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris , 1991, Applied and environmental microbiology.

[182]  M. Saier,et al.  ATP-dependent phosphorylation of serine-46 in the phosphocarrier protein HPr regulates lactose/H+ symport in Lactobacillus brevis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[183]  W. Dobrogosz,et al.  Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri , 1989, Antimicrobial Agents and Chemotherapy.

[184]  M. Collins,et al.  Globicatella sanguis gen.nov., sp.nov., a new gram-positive catalase-negative bacterium from human sources. , 1992, The Journal of applied bacteriology.

[185]  G. Molin,et al.  Classification of Lactobacillus reuteri by Restriction Endonuclease Analysis of Chromosomal DNA , 1994 .

[186]  M. Collins,et al.  Research LetterThe phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. , 1990 .

[187]  W. Holzapfel,et al.  Isolation of a DNA Probe for Lactobacillus curvatus , 1988, Applied and environmental microbiology.

[188]  P. Mitchell Chemiosmotic coupling in energy transduction: A logical development of biochemical knowledge , 1972, Journal of bioenergetics.

[189]  F. Archibald,et al.  Manganese: its acquisition by and function in the lactic acid bacteria. , 1986, Critical reviews in microbiology.

[190]  N. Pace,et al.  Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[191]  T. Sakurai,et al.  Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways , 1981, Journal of bacteriology.

[192]  M. Teuber Exploitation of Genetically-Modified Microorganisms in the Food Industry , 1992 .

[193]  K. Schleifer,et al.  Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum , 1984, Journal of bacteriology.

[194]  M. Collins,et al.  Lactic acid bacteria and human clinical infection. , 1993, The Journal of applied bacteriology.

[195]  B. Poolman,et al.  Control of glycolysis by glyceraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lactis , 1987, Journal of bacteriology.

[196]  J. Thompson,et al.  Uptake and metabolism of sucrose by Streptococcus lactis , 1981, Journal of bacteriology.

[197]  R. Kunkee,et al.  Stimulatory Effect of Malo-Lactic Fermentation on the Growth Rate of Leuconostoc oenos , 1976, Applied and environmental microbiology.

[198]  D. Garmyn,et al.  Lactobacillus plantarum ldhL gene: overexpression and deletion , 1994, Journal of bacteriology.

[199]  W. Nicholson,et al.  Catabolite repression of α amylase gene expression in Bacillus subtilis involves a trans‐acting gene product homologous to the Escherichia coli lacl and galR repressors , 1991, Molecular microbiology.