Farthest Neighbor: The Distant Milky Way Satellite Eridanus II

We present Magellan/IMACS spectroscopy of the recently discovered Milky Way satellite Eridanus II (Eri II). We identify 28 member stars in Eri II, from which we measure a systemic radial velocity of and a velocity dispersion of . Assuming that Eri II is a dispersion-supported system in dynamical equilibrium, we derive a mass within the half-light radius of , indicating a mass-to-light ratio of / and confirming that it is a dark matter-dominated dwarf galaxy. From the equivalent width measurements of the Ca triplet lines of 16 red giant member stars, we derive a mean metallicity of [Fe/H] = −2.38 ± 0.13 and a metallicity dispersion of . The velocity of Eri II in the Galactic standard of rest frame is vGSR = −66.6 , indicating that either Eri II is falling into the Milky Way potential for the first time or that it has passed the apocenter of its orbit on a subsequent passage. At a Galactocentric distance of ∼370 kpc, Eri II is one of the Milky Way’s most distant satellites known. Additionally, we show that the bright blue stars previously suggested to be a young stellar population are not associated with Eri II. The lack of gas and recent star formation in Eri II is surprising given its mass and distance from the Milky Way, and may place constraints on models of quenching in dwarf galaxies and on the distribution of hot gas in the Milky Way halo. Furthermore, the large velocity dispersion of Eri II can be combined with the existence of a central star cluster to constrain massive compact halo object dark matter with mass ≳10 .

[1]  J. Frieman,et al.  Nearest Neighbor: The Low-mass Milky Way Satellite Tucana III , 2016, 1610.05301.

[2]  B. Willman,et al.  Dynamical evidence for a strong tidal interaction between the Milky Way and its satellite, Leo V , 2016, 1608.05710.

[3]  R. Lupton,et al.  A NEW MILKY WAY SATELLITE DISCOVERED IN THE SUBARU/HYPER SUPRIME-CAM SURVEY , 2016, 1609.04346.

[4]  D. Nidever,et al.  AN ULTRA-FAINT GALAXY CANDIDATE DISCOVERED IN EARLY DATA FROM THE MAGELLANIC SATELLITES SURVEY , 2016, 1609.02148.

[5]  M. Boylan-Kolchin,et al.  Under pressure: quenching star formation in low-mass satellite galaxies via stripping , 2016, 1606.07810.

[6]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[7]  Sergey E. Koposov,et al.  At the survey limits: discovery of the Aquarius 2 dwarf galaxy in the VST ATLAS and the SDSS data , 2016, 1605.05338.

[8]  Timothy D. Brandt CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES , 2016, 1605.03665.

[9]  Tucson,et al.  DEEP IMAGING OF ERIDANUS II AND ITS LONE STAR CLUSTER , 2016, 1604.08590.

[10]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[11]  Joss Bland-Hawthorn,et al.  The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.

[12]  Sergey E. Koposov,et al.  The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater , 2016, 1601.07178.

[13]  L. Hernquist,et al.  The Mass Profile of the Milky Way to the Virial Radius from the Illustris Simulation , 2015, 1510.06409.

[14]  B. Yanny,et al.  EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY , 2015, 1508.03622.

[15]  John L. Tonry,et al.  SAGITTARIUS II, DRACO II AND LAEVENS 3: THREE NEW MILKY WAY SATELLITES DISCOVERED IN THE PAN-STARRS 1 3π SURVEY , 2015, 1507.07564.

[16]  O. I. Wong,et al.  On the neutral gas content of nine new Milky Way satellite galaxy candidates , 2015, 1507.03661.

[17]  H. Jerjen,et al.  HOROLOGIUM II: A SECOND ULTRA-FAINT MILKY WAY SATELLITE IN THE HOROLOGIUM CONSTELLATION , 2015, 1505.04948.

[18]  D. Gerdes,et al.  STELLAR KINEMATICS AND METALLICITIES IN THE ULTRA-FAINT DWARF GALAXY RETICULUM II , 2015, 1504.02889.

[19]  Irvine,et al.  Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites , 2015, 1504.02466.

[20]  A. Milone,et al.  A HERO’S DARK HORSE: DISCOVERY OF AN ULTRA-FAINT MILKY WAY SATELLITE IN PEGASUS , 2015, 1503.08268.

[21]  M. Boylan-Kolchin,et al.  Taking care of business in a flash : constraining the time-scale for low-mass satellite quenching with ELVIS , 2015, 1503.06803.

[22]  E. Tollerud,et al.  RAPID ENVIRONMENTAL QUENCHING OF SATELLITE DWARF GALAXIES IN THE LOCAL GROUP , 2015, 1503.06799.

[23]  S. Majewski,et al.  HYDRA II: A FAINT AND COMPACT MILKY WAY DWARF GALAXY FOUND IN THE SURVEY OF THE MAGELLANIC STELLAR HISTORY , 2015, 1503.06216.

[24]  H. Rix,et al.  A NEW FAINT MILKY WAY SATELLITE DISCOVERED IN THE PAN-STARRS1 3π SURVEY , 2015, 1503.05554.

[25]  B. Yanny,et al.  EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA , 2015, 1503.02584.

[26]  J. Chiang,et al.  SEARCH FOR GAMMA-RAY EMISSION FROM DES DWARF SPHEROIDAL GALAXY CANDIDATES WITH FERMI-LAT DATA , 2015, 1503.02632.

[27]  Sergey E. Koposov,et al.  BEASTS OF THE SOUTHERN WILD: DISCOVERY OF NINE ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS , 2015, 1503.02079.

[28]  A. Milone,et al.  DISCOVERY OF A FAINT OUTER HALO MILKY WAY STAR CLUSTER IN THE SOUTHERN SKY , 2015, 1502.03952.

[29]  J. Garc'ia-Bellido,et al.  Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies , 2015, 1501.07565.

[30]  G. Martinez A robust determination of Milky Way satellite properties using hierarchical mass modelling , 2013, 1309.2641.

[31]  H. Ferguson,et al.  THE QUENCHING OF THE ULTRA-FAINT DWARF GALAXIES IN THE REIONIZATION ERA , 2014, 1410.0681.

[32]  B. Willman,et al.  THE DEARTH OF NEUTRAL HYDROGEN IN GALACTIC DWARF SPHEROIDAL GALAXIES , 2014, 1410.0028.

[33]  M. Walker,et al.  DWARF GALAXY ANNIHILATION AND DECAY EMISSION PROFILES FOR DARK MATTER EXPERIMENTS , 2014, 1408.0002.

[34]  R. Bender,et al.  DWARF GALAXY DARK MATTER DENSITY PROFILES INFERRED FROM STELLAR AND GAS KINEMATICS , 2014, 1405.4854.

[35]  J. Holtzman,et al.  THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. I. HUBBLE SPACE TELESCOPE/WIDE FIELD PLANETARY CAMERA 2 OBSERVATIONS , 2014, 1404.7144.

[36]  M. Boylan-Kolchin,et al.  ELVIS: Exploring the Local Volume in Simulations , 2013, 1310.6746.

[37]  C. Brook,et al.  The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores , 2013, 1306.0898.

[38]  Judith G. Cohen,et al.  THE UNIVERSAL STELLAR MASS–STELLAR METALLICITY RELATION FOR DWARF GALAXIES , 2013, 1310.0814.

[39]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[40]  R. Carrera,et al.  The near-infrared Ca ii triplet as a metallicity indicator – II. Extension to extremely metal-poor metallicity regimes , 2013, 1306.3883.

[41]  J. Kruijssen,et al.  Did massive black holes in globular clusters initially satisfy galactic scaling relations , 2013, 1306.0561.

[42]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[43]  David W. Hogg,et al.  THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA , 2012, 1209.0759.

[44]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[45]  Michael C. Cooper,et al.  spec2d: DEEP2 DEIMOS Spectral Pipeline , 2012 .

[46]  J. Holtzman,et al.  THE STAR FORMATION HISTORY OF LEO T FROM HUBBLE SPACE TELESCOPE IMAGING , 2012, 1201.4859.

[47]  J. Peñarrubia,et al.  A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES , 2011, 1108.2404.

[48]  Cambridge,et al.  How supernova feedback turns dark matter cusps into cores , 2011, 1106.0499.

[49]  D. Kelson,et al.  IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade , 2011 .

[50]  P. O'Neill Synthesis of RKA 182 , 2010 .

[51]  A. McConnachie,et al.  REVISITING THE INFLUENCE OF UNIDENTIFIED BINARIES ON VELOCITY DISPERSION MEASUREMENTS IN ULTRA-FAINT STELLAR SYSTEMS , 2010, 1009.4205.

[52]  N. Martin,et al.  THE HERCULES SATELLITE: A STELLAR STREAM IN THE MILKY WAY HALO? , 2010, 1008.0014.

[53]  B. Willman,et al.  A COMPLETE SPECTROSCOPIC SURVEY OF THE MILKY WAY SATELLITE SEGUE 1: THE DARKEST GALAXY , 2010, 1007.4198.

[54]  J. Bullock,et al.  CORRECTING VELOCITY DISPERSIONS OF DWARF SPHEROIDAL GALAXIES FOR BINARY ORBITAL MOTION , 2010, 1001.1160.

[55]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[56]  M. Irwin,et al.  On the reported death of the MACHO era , 2009, 0903.1644.

[57]  R. Essig,et al.  Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies , 2009, 0902.4750.

[58]  J. Grcevich,et al.  H i IN LOCAL GROUP DWARF GALAXIES AND STRIPPING BY THE GALACTIC HALO , 2009, 0901.4975.

[59]  M. Ricotti Late gas accretion on to primordial minihaloes: a model for Leo T, dark galaxies and extragalactic high-velocity clouds , 2008, 0806.2402.

[60]  Robert P. Johnson,et al.  Pre-launch estimates for GLAST sensitivity to dark matter annihilation signals , 2008, 0806.2911.

[61]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[62]  D. Thompson,et al.  The Structural Properties and Star Formation History of Leo T from Deep LBT Photometry , 2008, 0801.4027.

[63]  Beth Willman,et al.  The Most Dark-Matter-dominated Galaxies: Predicted Gamma-Ray Signals from the Faintest Milky Way Dwarfs , 2007, 0709.1510.

[64]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[65]  Sergey E. Koposov,et al.  Discovery of an Unusual Dwarf Galaxy in the Outskirts of the Milky Way , 2007, astro-ph/0701154.

[66]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars. X. Extended Dark Matter or Tidal Disruption?: The Case for the Leo I Dwarf Spheroidal Galaxy , 2006, astro-ph/0608151.

[67]  J. Beaulieu,et al.  Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.

[68]  Tyson Hare,et al.  IMACS: the wide-field imaging spectrograph on Magellan-Baade , 2006, SPIE Astronomical Telescopes + Instrumentation.

[69]  R. Bernstein,et al.  Internal Kinematics of the Fornax Dwarf Spheroidal Galaxy , 2005, astro-ph/0511465.

[70]  D. O. Astronomy,et al.  The Parkes HI survey of the Magellanic System , 2004, astro-ph/0411453.

[71]  L. Staveley-Smith,et al.  A New Look at the Kinematics of Neutral Hydrogen in the Small Magellanic Cloud , 2003, astro-ph/0312223.

[72]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[73]  N. Suntzeff,et al.  New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics , 2002, astro-ph/0205161.

[74]  V. Rubin,et al.  Mass Density Profiles of Low Surface Brightness Galaxies , 2001, astro-ph/0103102.

[75]  B. Gibson,et al.  The HI Parkes All Sky Survey: southern observations, calibration and robust imaging , 2001 .

[76]  D. Weinberg,et al.  Hierarchical Galaxy Formation and Substructure in the Galaxy’s Stellar Halo , 2000, astro-ph/0007295.

[77]  L. Blitz,et al.  Gas-Rich Dwarf Spheroidals , 2000, astro-ph/0001142.

[78]  R. Schiavon,et al.  The Near-Infrared Na I Doublet Feature in M Stars , 1996, astro-ph/9610243.

[79]  E. Olszewski,et al.  The Mass-to-Light Ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. II. The Binary Population and its Effects on the Measured Velocity Dispersions of Dwarf Spheroidals , 1995, astro-ph/9510155.

[80]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[81]  John Dubinski,et al.  The structure of cold dark matter halos , 1991 .

[82]  Bergström,et al.  Observable monochromatic photons from cosmic photino annihilation. , 1988, Physical review. D, Particles and fields.

[83]  J. Gunn,et al.  Some Astrophysical Consequences of the Existence of a Heavy Stable Neutral Lepton , 1978 .

[84]  J. Einasto,et al.  Missing mass around galaxies: morphological evidence , 1974, Nature.